目录 故事背景 空域特征转换 超分辨率网络 发表在2018年CVPR. 摘要 Despite that convolutional neural networks (CNN) have recently demonstrated high-quality reconstruction for single-image super-resolution (SR), recovering natural and realistic texture remains a challenging prob…
使用深度学习的超分辨率介绍 关于使用深度学习进行超分辨率的各种组件,损失函数和度量的详细讨论. 介绍 超分辨率是从给定的低分辨率(LR)图像恢复高分辨率(HR)图像的过程.由于较小的空间分辨率(即尺寸)或由于退化的结果(例如模糊),图像可能具有"较低分辨率".我们可以通过以下等式将HR和LR图像联系起来:LR = degradation(HR) 显然,在应用降级函数时,我们从HR图像获得LR图像.但是,我们可以反过来吗?在理想的情况下,是的!如果我们知道确切的降级函数,通过将其逆应用于…
Capel, David, and Andrew Zisserman. "Computer vision applied to super resolution." Signal Processing Magazine, IEEE 20, no. 3 (2003): 75-86. 简介 超分辨率重建的目的是使用一组低分辨率的图像来估计一副高分辨率图像.重建主要通过两个步骤来完成:配准低分辨率的图片组到一个公共的坐标系,然后使用图像的生成模型(generative image model…
Super Resolution Accepted : 121   Submit : 187 Time Limit : 1000 MS   Memory Limit : 65536 KB  Super Resolution Bobo has an n×m picture consists of black and white pixels. He loves the picture so he would like to scale it a×b times. That is, to repla…
ASEGAN:WGAN音频超分辨率 这篇文章并不具有权威性,因为没有发表,说不定是外国的某个大学的毕业设计,或者课程结束后的作业.或者实验报告. CS230: Deep Learning, Spring 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.) 作者:Jonathan Gomes-Selman, Arjun Sawhney, WoodyWang 摘要 本文提出使用Wasserstein(沃瑟斯…
博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/10874993.html 论文作者:Sefik Emre Eskimez , Kazuhito Koishida 摘要 语音超分辨率(SSR)或语音带宽扩展的目标是由给定的低分辨率语音信号生成缺失的高频分量.它有提高电信质量的潜力.我们提出了一种新的SSR方法,该方法利用生成对抗网络(GANs)和正则化(regularization)方法来稳定GAN训练.生成器网络是有一维卷积核的卷积自编码器,…
Google Pixel 超分辨率--Super Resolution Zoom Google 的Super Res Zoom技术,主要用于在zoom时增强画面细节以及提升在夜景下的效果. 文章的主要贡献有: ·       使用多帧图像超分辨算法代替去马赛克算法 ·       引入自适应核插值和融合算法.其自适应于图像的局部结构,对稀疏采样的数据进行拟合. ·       提出了运动鲁棒模型,对局部运动.遮挡.配准失败区域有较好的的鲁棒性 ·       分析了手部震颤规律,并说明了其做为亚…
  准确地说,RAISR并不是用来压缩图像的,而是用来upsample图像的. 众所周知,图片缩小到半分辨率后,在拉回原大小,会出现强烈的锯齿.从80年代开始就有很多super sampling的方法,要么从多张低分辨率的图构建出高分辨率,要么从单张“猜测”出高分辨率.本质上其实都是针对边缘搞事情.从锯齿状的边缘恢复出一条带斜率的线段. 用机器学习做这件事情,基本框架是1. 拿到大量高分辨率的图像,对图片做分块,比如4x4.2. 每个块都缩小到半分辨率.3. 用半分辨率的块作为输入,全分辨率的块…
加尔各答印度统计研究所,作者: Pulak Purkait (pulak_r@isical.ac.in) 2013 年 代码:CodeForge.cn http://www.codeforge.cn/article/239282/…
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning b…