中国剩余定理简析(python实现)】的更多相关文章

中国剩余定理CRT 正整数m1,m2,...,mk两两互素,对b1,b2,...,bk的同余式组为 \[\begin{cases} x \equiv b_1\; mod \;m_1\\ x \equiv b_2\; mod \;m_2\\ \quad\quad\vdots\\ x \equiv b_k\; mod \;m_k\\ \end{cases} \] 在mod M \[M = \prod_{i = 1}^{k}m_i \] 的情况下有唯一解 \[x = (\sum_{i=1}^k b_i…
摘要:是否想在Python解释器的内部晃悠一圈?是不是想实现一个Python代码执行的追踪器?没有基础?不要怕,这篇文章让你初窥Python底层的奥妙. [编者按]下面博文将带你创建一个字节码级别的追踪API以追踪Python的一些内部机制,比如类似 YIELDVALUE.YIELDFROM操作码的实现,推式构造列表(List Comprehensions).生成器表达式(generator expressions)以及其他一些有趣Python的编译. 关于译者:赵斌, OneAPM工程师,常年…
Han Xin and His Troops(扩展中国剩余定理 Python版) 题目来源:2019牛客暑期多校训练营(第十场) D - Han Xin and His Troops 题意:   看标题就知道大概了,韩信点兵的典故我们应该都熟悉吧.   给出 \(n\) 个同余方程,问是否存在不超过 \(m\) 的正整数解.   坑点:   数据比较大,直接用 CRT 会爆 ll,这时候就用 Python 来实现.   AC代码: n = 110 # 同余方程个数 a = [0]*110 # 余…
转载自http://shift-alt-ctrl.iteye.com/blog/1987416 Apache Thrift是一个跨语言的服务框架,本质上为RPC,同时具有序列化.发序列化机制:当我们开发的service需要开放出去的时候,就会遇到跨语言调用的问题,JAVA语言开发了一个UserService用来提供获取用户信息的服务,如果服务消费端有PHP/Python/C++等,我们不可能为所有的语言都适配出相应的调用方式,有时候我们会很无奈的使用Http来作为访问协议;但是如果服务消费端不能…
springmvc中对业务的具体处理是通过HandlerAdapter适配器操作的 HandlerAdapter接口方法 列表如下 /** * Given a handler instance, return whether or not this {@code HandlerAdapter} * can support it. Typical HandlerAdapters will base the decision on the handler * type. HandlerAdapter…
简析 __init__.__new__.__call__ 方法 任何事物都有一个从创建,被使用,再到消亡的过程,在程序语言面向对象编程模型中,对象也有相似的命运:创建.初始化.使 用.垃圾回收,不同的阶段由不同的方法(角色)负责执行. 定义一个类时,大家用得最多的就是 __init__ 方法,而 __new__ 和 __call__ 使用得比较少,这篇文章试图帮助大家把这3个方 法的正确使用方式和应用场景分别解释一下. 关于 Python 新式类和老式类在这篇文章不做过多讨论,因为老式类是 Py…
今天在$xsy$上翻题翻到了一道扩展CRT的题,就顺便重温了下(扩展CRT模板也在里面) 中国剩余定理是用于求一个最小的$x$,满足$x\equiv c_i \pmod{m_i}$. 正常的$CRT$有一个微小的要求,就是$\forall i,j (m_i,m_j)=1$. 在某些情况下,这个式子无法被满足,这个时候就要用扩展$CRT$来求解了. 我们先假设我们只有两条方程要被求解,它们分别是: $\begin{cases} x\equiv c_1 \pmod{m_1}\\x\equiv c_2…
POJ.1006 Biorhythms (拓展欧几里得+中国剩余定理) 题意分析 不妨设日期为x,根据题意可以列出日期上的方程: 化简可得: 根据中国剩余定理求解即可. 代码总览 #include <iostream> #include <cstdio> #include <algorithm> #include <cmath> using namespace std; typedef int ll; ll p,e,i,d; void exgcd(ll a,…
题目大意:求$G^{\sum_{m|n} C_{n}^{m}}\;mod\;999911659\;$的值$(n,g<=10^{9})$ 并没有想到欧拉定理.. 999911659是一个质数,所以$\varphi(p)=p-1$ 利用欧拉定理,降幂化简式子$G^{\sum_{m|n} C_{n}^{m}\;mod\;\varphi(p)}$ 这样,指数部分可以用$Lucas$+中国剩余定理求解 然而..$G>10^9$很大,可能和模数$999911659$不互质!所以质数要额外加上$\varph…
引入 常想起在空间里见过的一些智力题,这个题你见过吗: 一堆苹果,\(3\)个\(3\)个地取剩\(1\)个,\(5\)个\(5\)个地取剩\(1\)个,\(7\)个\(7\)个地取剩\(2\)个,苹果最少有几个? 够焦头烂额的(雾 大力算可知至少有16个. 我们把它抽象成数学问题: 求满足 \[\begin{cases}x\equiv1\pmod{3}\\x\equiv1\pmod{5}\\x\equiv2\pmod{7}\end{cases}\] 的最小正整数\(x\). 感性地猜到有一个长…