CF1156E Special Segments of Permutation】的更多相关文章

思路:笛卡尔树?(好像并不一定要建出来,但是可以更好理解) 提交:2次 错因:没有判左右儿子是否为空来回溯导致它T了 题解: 建出笛卡尔树,考虑如何计算答案: 先预处理每一个值出现的位置 \(pos[]\): 对于每一个有左右儿子的点,设他在原序列中的值为 \(mx\),根据笛卡尔树的性质,他比自己的子树中的任何一个元素都大 .这样, 我们遍历他的轻儿子中的元素 \(vl\) ,查询 \(pos[mx-vl]\) 是否在重子树中. 其实可以不建树,直接求出每个点作为最大值能够向左右扩展的区间,枚…
题意 给定一个全排列\(a\). 定义子区间\([l,r]\),当且仅当\(a_l + a_r = Max[l,r]\). 求\(a\)序列中子区间的个数. 题解 笛卡尔树上的启发式合并. \(2000MS\)的时限,\(1965MS\)卡过.. 还可以不建树,直接枚举区间,就可以用数组维护了.这种做法比较快. 代码 #include <bits/stdc++.h> #define FOPI freopen("in.txt", "r", stdin) #…
题目链接:https://codeforc.es/contest/1156/problem/E 题目大意: 在数组p中可以找到多少个不同的l,r满足. 思路: ST表+并查集. ST表还是需要的,因为nlongn的预处理就可以O(1)查询.枚举所有的区间也就O(n^2). 因为是输入固定1-n,所以我可以设一个y数组表示数组p的值所对应的下标. (习惯输入为x数组) 我们考虑一个区间[l,r]这个区间最大值为i.(这里用ST表可以找到) [l,r]对答案的贡献为最大值i左边找一个值a,右边找一个…
可以用单调栈直接维护出ai所能覆盖到的最大的左右范围是什么,然后我们可以用这个范围暴力的去查询这个区间的是否有满足的点对,一个小坑点,要对左右区间的大小进行判断,只需要去枚举距离i最近的一段区间去枚举即可,复杂度On,如果不判断可以退化成n^2. 10 1 2 3 4 5 6 7 8 9 10 // ——By DD_BOND //#include<bits/stdc++.h> #include<functional> #include<algorithm> #inclu…
题意: 给一个n的排列,求满足a[l]+a[r]=max(l,r)的(l,r)对数,max(l,r)指的是l到r之间的最大a[p] n<=2e5 思路: 先用单调栈处理出每个点能扩展的l[i],r[i] 搜索以每个点为最大值时的贡献,对每个点只搜索它左边部分或右边部分最小的那个 可以证明,每个点最多被搜到logn次,类似于启发式合并的思想, 复杂度为nlogn 代码: #include<iostream> #include<cstdio> #include<algori…
Educational Codeforces Round 64 部分题解 不更了不更了 CF1156D 0-1-Tree 有一棵树,边权都是0或1.定义点对\(x,y(x\neq y)\)合法当且仅当树上\(x\)到\(y\)的路径权值是一段0接一段1.求合法点对数量. 直接点分治 我是傻逼居然还写了50min... https://codeforces.com/contest/1156/submission/53661175 CF1156E Special Segments of Permut…
Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方形.圆以及三角形的情况,它们在上面的顶点是重合的. 其余的参照样例判断一下就好了了.具体证明我也不会 代码如下: Code #include <bits/stdc++.h> using namespace std; typedef long long ll; const int N = 2e5 +…
比赛链接: https://codeforces.com/contest/1156 A. Inscribed Figures 题意: 给出$n(2\leq n\leq 100)$个数,只含有1,2,3,分别代表圆,高与底相等的三角形,正方形 $a_{i+1}$在$a_{i}$的里面,$a_{i+1}$的面积尽可能的大 求不同的交点个数 分析: 注意正方形里面一个圆,再里面一个三角形的时候,有一个交点重合 ac代码: #include<bits/stdc++.h> #define ll long…
感觉这场比赛题目质量挺高(A 全场最佳),难度也不小.虽然 unr 后就懒得打了. A. Inscribed Figures 题意 给你若干个图形,每个图形为三角形.圆形或正方形,第 \(i\) 个图形内接于第 \(i-1\) 个图形.问交点是否有限,如有限求交点个数. (题目还有很多细节,具体见原题.) 题解 如果两个一样的图形相邻或正方形和三角形相邻. 圆和三角形有 \(3\) 个交点,和正方形有 \(4\) 个交点. 注意如果是 [圆.正方形.三角形]这样的,最上面有一个交点会重合,答案要…
Answer to the experiment(1),(2),(3),(4) Experiment(5): Screenshots&Results: from the command u we can know that a : 076A b :076B c1 :076C elements in c1 before adding a and b after adding a and b 076C:0000~076C:0007: 02 04 06 08 0A 0C 0E 10 just doub…
6.3 Segment-Level Protection 段级保护 All five aspects of protection apply to segment translation: 段转换时会提供以下5个方面的保护: Type checking 类型检验 Limit checking 限长检验 Restriction of addressable domain 可寻址域的限定 Restriction of procedure entry points 程序入口点的限定 Restricti…
Content 给定一个整数 \(n\),请构造出一个长度为 \(n\) 的排列 \(\{a_i\}_{i=1}^n\),使得对于每个 \(a_i\),都有 \(a_i\neq i\). 我们称一个长度为 \(n\) 的数列为一个排列,当且仅当所有 \(1\sim n\) 的整数都出现且仅出现了一次.比如说 \([2,3,1,5,4]\) 就是一个长度为 \(5\) 的排列,而 \([1,2,2]\) 和 \([1,3,4]\) 都不是一个排列. 数据范围:\(1\leqslant t\leqs…
这里是一个比较简单的问题:考虑每个数对和的贡献.先考虑数列两端的值,两端的摆放的值总计有2种,比如左端:0,大,小:0,小,大:有1/2的贡献度.右端同理. 中间的书总计有6种可能.小,中,大.其中有两种对答案有贡献,即1/3的贡献度.加和计算可得到答案. Permutation Bo Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s):…
By now, you are given a secret signature consisting of character 'D' and 'I'. 'D' represents a decreasing relationship between two numbers, 'I' represents an increasing relationship between two numbers. And our secret signature was constructed by a s…
Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers. If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order). The replaceme…
By now, you are given a secret signature consisting of character 'D' and 'I'. 'D' represents a decreasing relationship between two numbers, 'I' represents an increasing relationship between two numbers. And our secret signature was constructed by a s…
E1. Median on Segments (Permutations Edition) time limit per test 3 seconds memory limit per test 256 megabytes input standard input output standard output You are given a permutation p1,p2,…,pnp1,p2,…,pn. A permutation of length nn is a sequence suc…
题目链接:http://acm.hnu.cn/online/?action=problem&type=show&id=13341&courseid=0 Joke with permutation Time Limit: 3000ms, Special Time Limit:7500ms, Memory Limit:65536KB Total submit users: 85, Accepted users: 57 Problem 13341 : Special judge Prob…
原题链接在这里:https://leetcode.com/problems/find-permutation/description/ 题目: By now, you are given a secret signature consisting of character 'D' and 'I'. 'D' represents a decreasing relationship between two numbers, 'I' represents an increasing relations…
Permutation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 0    Accepted Submission(s): 0Special Judge Problem Description A permutation p1,p2,...,pn of 1,2,...,n is called a lucky permutatio…
Median on Segments (Permutations Edition) time limit per test 3 seconds memory limit per test 256 megabytes input standard input output standard output You are given a permutation p1,p2,…,pnp1,p2,…,pn. A permutation of length nn is a sequence such th…
[Hello 2020] C. New Year and Permutation (组合数学) C. New Year and Permutation time limit per test 1 second memory limit per test 1024 megabytes input standard input output standard output Recall that the permutation is an array consisting of nn distinc…
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3…
Count the number of segments in a string, where a segment is defined to be a contiguous sequence of non-space characters. Please note that the string does not contain any non-printable characters. Example: Input: "Hello, my name is John" Output:…
Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empty list if no palindromic permutation could be form. For example: Given s = "aabb", return ["abba", "baab"]. Given s = "a…
Given a string, determine if a permutation of the string could form a palindrome. For example,"code" -> False, "aab" -> True, "carerac" -> True. Hint: Consider the palindromes of odd vs even length. What difference d…
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3…
Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers. If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order). The replaceme…
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order,We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "3…
Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 4569 Description Let f(x) = a nx n +...+ a 1x +a 0, in which a i (0 <= i <= n) are all known integers. We call f(x) 0 (mod…