写mapreduce程序时,如果reduce个数>1,想要实现全排序需要控制好map的输出,详见Hadoop简单实现全排序. 现在学了hive,写sql大家都很熟悉,如果一个order by解决了全排序还用那么麻烦写mapreduce函数吗? 事实上,hive使用order by会默认设置reduce的个数=1,既然reducer的个数都是1了,结果自然全排序! 这也违背了充分利用分布式计算进行海量数据排序的初衷,效率低下. 那么hive又提供了一个可供选择的方式:sort by 它会保证每个r…
写mapreduce程序时,如果reduce个数>1,想要实现全排序需要控制好map的输出 现在学了Hive,写sql大家都很熟悉,如果一个order by解决了全排序还用那么麻烦写mapreduce函数吗? 事实上,hive使用order by会默认设置reduce的个数=1,既然reducer的个数都是1了,结果自然全排序! 这也违背了充分利用分布式计算进行海量数据排序的初衷,效率低下. 那么hive又提供了一个可供选择的方式:sort by 它会保证每个reducer的输出文件是有序的(其…
order by order by 会对输入做全局排序,因此只有一个reducer(多个reducer无法保证全局有序)只有一个reducer,会导致当输入规模较大时,需要较长的计算时间. set hive.mapred.mode=nonstrict; (default value / 默认值) set hive.mapred.mode=strict; order by 和数据库中的Order by 功能一致,按照某一项 & 几项 排序输出. 与数据库中 order by 的区别在于在hive.…
order by:     order by是全局排序,受hive.mapred.mode的影响.       使用orderby有一些限制:     1.在严格模式下(hive.mapred.mode=strict),orderby必须跟limit一起使用(?).         原因:在执行orderby时,hive使用一个reducer,如果查询结果量很大,这个reducer执行起来会很费劲,所以必须要限制查询输出结果的数量.         limit n 之后,reducer处理的数据…
前段时间,跟候选人聊天的时候,一个有多年工作经验的资深 iOS 工程师告诉我,他最近正在学习 Machine Learning 相关的知识.他觉得,对于程序员来说,技术进步大大超过世人的想象,如果你不跟随时代进步,就会落后于时代. 我其实已经听过很多人跟我说过类似的话.只不过不同人嘴里提到的词汇各有不同——大数据.数据挖掘.机器学习.人工智能…… 这些当前火热的概念各有不同,又有交叉,总之都是推动我们掌控好海量数据,并从中提取到有价值信息的技术. 程序员对这些技术跃跃欲试,知乎上「深度学习如何入…
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:Build2016开完很久了,现在才来回顾下,就说说那些和大数据相关的Session,也因为笔者最近在深入研究这方面的东西. 3月30日到4月1日的Build2016 微软开发者大会的内容引爆了整个.NET开发社区,大家的热情都被Xamarin免费开源.Bash on Windows等点燃了.不过在这些热点背后,我还是比较关注和自己最近研究的大数据领域相关的Session.下面我就整理一些我个…
漫谈ELK在大数据运维中的应用 圈子里关于大数据.云计算相关文章和讨论是越来越多,愈演愈烈.行业内企业也争前恐后,群雄逐鹿.而在大数据时代的运维挑站问题也就日渐突出,任重而道远了.众所周知,大数据平台组件是很复杂的.而这庞大的系统整合问题,对于运维来说是很头疼的.所以,在大数据时代下的运维问题是日渐尖锐. 有人把运维比作医生给病人看病,那么日志则是病人对自己的陈述.所以只有在海量分布式日志系统中有效的提取关键信息,才能对症下药.如果能把这些日志集中管理,并提供全文检索功能,不仅可以提高诊断的效率…
一.背景介绍 最近几天,接到公司的一个将当前大数据平台数据全部迁移到阿里云ODPS平台上的任务.而申请的这个ODPS平台是属于政务内网的,因考虑到安全问题当前的大数据平台与阿里云ODPS的网络是不通的,所以不能使用数据采集工作流模板. 然而,考虑到原大数据平台数据量并不是很大,可以通过将原大数据平台数据导出到CSV文件,然后再将CSV文件导入到ODPS平台.在这个过程中踩的坑有点多,所以想写篇文档作为记录. 二.大数据平台Hive数据导出到本地 编写export_data.sh脚本如下: #!/…
hdfs数据到hive中: 假设hdfs中已存在好了数据,路径是hdfs:/localhost:9000/user/user_w/hive_g2park/user_center_enterprise_info/* 1.提前(在hive中)准备好表, user_center_enterprise_info2 ,用于接收hdfs数据. CREATE TABLE user_center_enterprise_info2 ( `id`string , `name` string ); 2.使用load…
比赛技巧:https://zhuanlan.zhihu.com/p/28084438 文章来源: https://www.imooc.com/article/72863 随着近几年人工智能和大数据的快速发展和应用,使得相应的工智能&大数据相关比赛比赛近几年火热了起来,下面就我知道到的人工智能&大数据相关比赛,为大家简要说下,感兴趣的可以参加一些比赛,锻炼一下自己,也能知道一些前沿的技术,说不定还能拿些奖金呢?哈哈…