人工智能深度学习框架MXNet实战:深度神经网络的交通标志识别训练 MXNet 是一个轻量级.可移植.灵活的分布式深度学习框架,2017 年 1 月 23 日,该项目进入 Apache 基金会,成为 Apache 的孵化器项目.尽管现在已经有很多深度学习框架,包括 TensorFlow, Keras, Torch,以及 Caffe,但 Apache MXNet 因其对多 GPU 的分布式支持而越来越受欢迎. 环境准备1.安装 Anaconda.Anaconda 是一个用于科学计算的 Python…
import os import tab import tensorflow as tf print "tensorflow 5.2 " from tensorflow.examples.tutorials.mnist import input_data ''' mnist = input_data.read_data_sets("/asky/tensorflow/mnist_data",one_hot=True) print "-------------…
源码和运行结果 cuda:https://github.com/zhxfl/CUDA-CNN C语言版本参考自:http://eric-yuan.me/ 针对著名手写数字识别的库mnist,准确率是99.7%,在几分钟内,CNN的训练就可以达到99.60%左右的准确率. 参数配置 网络的配置使用Config.txt进行配置##之间是注释,代码会自动过滤掉,其他格式参考如下: #Comment# #NON_LINEARITY CAN = NL_SIGMOID , NL_TANH , NL_RELU…
一.TensorFlow实战Google深度学习框架学习 1.步骤: 1.定义神经网络的结构和前向传播的输出结果. 2.定义损失函数以及选择反向传播优化的算法. 3.生成会话(session)并且在训练数据上反复运行反向传播优化算法. 2.代码: 来源:https://blog.csdn.net/longji/article/details/69472310 import tensorflow as tf from numpy.random import RandomState # 1. 定义神…
自学人工智能的第一天 "TensorFlow 是谷歌 2015 年开源的主流深度学习框架,目前已得到广泛应用.本书为 TensorFlow 入门参考书,旨在帮助读者以快速.有效的方式上手 TensorFlow 和深度学习.书中省略了烦琐的数学模型推导,从实际应用问题出发,通过具体的 TensorFlow 示例介绍如何使用深度学习解决实际问题.书中包含深度学习的入门知识和大量实践经验,是走进这个前沿.热门的人工智能领域的优选参考书 . “互联网+”的大潮催生了诸如“互联网+外卖”.“互联网+打车”…
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自TensorFlow于2015年底正式开源,距今已有一年多,这期间TensorFlow不断给人以惊喜.在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准.本文节选自<TensorFlow实战>第二章. 主流深度学习框架对比 深度学习研究的热潮持续高涨,各种开源…
本系列为Tensorflow实战Google深度学习框架知识笔记,仅为博主看书过程中觉得较为重要的知识点,简单摘要下来,内容较为零散,请见谅. 2017-11-06 [第五章] MNIST数字识别问题 1. MNIST数据处理 为了方便使用,Tensorflow提供了一个类来处理MNIST数据,这个类会自动下载并转化MNIST数据的格式,将数据从原始的数据包中解析成训练和测试神经网络时使用的格式. 2. 神经网络模型训练及不同模型结果对比 为了评测神经网络模型在不同参数下的效果,一般会从训练数据…
目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使用 3.会话 4.TensorFlow实现神经网络 I. 前向传播算法 II. 神经网络参数与TensorFlow变量 III. 用TF训练神经网络 四.深层神经网络 1. 深度学习与深度神经网络 I. 线性模型的局限性 II. Activation去线性化 III. 多层网络解决异或运算 2. L…
学习过程是Tensorflow 实战google深度学习框架一书的第六章的迁移学习环节. 具体见我提出的问题:https://www.tensorflowers.cn/t/5314 参考https://blog.csdn.net/zhuiqiuk/article/details/53376283后,对代码进行了修改. 问题的跟踪情况记录: 1 首先是保存模型: import tensorflow as tf from tensorflow.python.framework import grap…
参考书 <TensorFlow:实战Google深度学习框架>(第2版) 这本书我老老实实从头到尾看了一遍(实际上是看到第9章,刚看完,后面的实在看不下去了,但还是会坚持看的),所有的代码都是手敲了一遍.这本书对于想TensorFlow入门的小伙伴来说,可以看到第8章了解一下循环神经网络的原理,第8章最后的例子举的真的是很烂,用循环神经网络去预测sin函数曲线,我是真的佩服这种例子都能想得出来.循环神经网络,不应该找一个经典的,与时间有关的具有时间累积效应的例子之类的吗,比如说钢材随时间的损坏…
Amazon公司的Werner Vogels于上周宣布Amazon深度学习框架将会正式选用MXNet,并且AWS将会通过增加源代码贡献.改进文档以及支持来自其它框架的可视化.开发以及迁移工具,为实现MXNet成功的长远目标做出贡献. Vogles指出在欺诈检测.推荐流水线.库存和产品检查审计等领域,有一系列无法通过编写显式算法实现的计算任务,对此问题一类被称为深度学习的机器学习方法正日益发挥重要作用,此外,在内容搜索.自主无人机.订单履行中心机器人.文本及语音识别等领域中也广泛地使用了机器学习方…
TensorFlow是谷歌2015年开源的主流深度学习框架,目前已得到广泛应用.<TensorFlow:实战Google深度学习框架(第2版)>为TensorFlow入门参考书,帮助快速.有效的方式上手TensorFlow和深度学习.书中省略了烦琐的数学模型推导,从实际应用问题出发,通过具体的TensorFlow示例介绍如何使用深度学习解决实际问题.书中包含深度学习的入门知识和大量实践经验,是走进这个前沿.热门的人工智能领域的优选参考书. 第2版将书中所有示例代码从TensorFlow 0.9…
开源脉冲神经网络深度学习框架--惊蛰(SpikingJelly) 背景 近年来神经形态计算芯片发展迅速,大量高校企业团队跟进,这样的芯片运行SNN的能效比与速度都超越了传统的通用计算设备.相应的,神经形态感知芯片也发展迅速.目前已有各种模态的感知芯片,其中如北京大学黄铁军教授团队的Vidar相机,功能上仿照视网膜中央凹,能输出脉冲信号,高速情况下实现比传统相机更清晰的采样.脉冲网络研究领域顶会文章与Nature Science刊物文章也在逐年增长(如下图).通过ANN转换SNN,SNN首次达到媲…
还未完全写完,本人会一直持续更新!~ 各大深度学习框架总结和比较 各个开源框架在GitHub上的数据统计,如下表: 主流深度学习框架在各个维度的评分,如下表: Caffe可能是第一个主流的工业级深度学习工具,它开始于2013年底,具有出色的卷积神经网络实现.在计算机视觉领域Caffe依然是最流行的工具包,它有很多扩展,但是由于一些遗留的架构问题,它对递归网络和语言建模的支持很差.此外,在Caffe中图层需要使用C++定义,而网络则使用Protobuf定义. CNTK由深度学习热潮的发起演讲人创建…
用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别 http://phunter.farbox.com/post/mxnet-tutorial1 用MXnet实战深度学习之二:Neural art http://phunter.farbox.com/post/mxnet-tutorial2…
引言:AlphaGo在2017年年初化身Master,在弈城和野狐等平台上横扫中日韩围棋高手,取得60连胜,未尝败绩.AlphaGo背后神秘的推动力就是TensorFlow--Google于2015年11月开源的机器学习及深度学习框架.  TensorFlow在2015年年底一出现就受到了极大的关注,在一个月内获得了GitHub上超过一万颗星的关注,目前在所有的机器学习.深度学习项目中排名第一,甚至在所有的Python项目中也排名第一.本文将带我们简单了解下TensorFlow,并与其他主流深度…
推荐GitHub上10 个开源深度学习框架   日前,Google 开源了 TensorFlow(GitHub),此举在深度学习领域影响巨大,因为 Google 在人工智能领域的研发成绩斐然,有着雄厚的人才储备,而且 Google 自己的 Gmail 和搜索引擎都在使用自行研发的深度学习工具. 无疑,来自 Google 军火库的 TensorFlow 必然是开源深度学习软件中的明星产品,登陆 GitHub 当天就成为最受关注的项目,当周获得评星数就轻松超过 1 万个. 对于希望在应用中整合深度学…
机器之心报道 本文首先介绍GitHub中最受欢迎的开源深度学习框架排名,然后再对其进行系统地对比 下图总结了在GitHub中最受欢迎的开源深度学习框架排名,该排名是基于各大框架在GitHub里的收藏数,这个数据由MitchDeFelice在2017年5月初完成. TensorFlow 地址:https://www.tensorflow.org/ TensorFlow最开始是由谷歌一个称之为DistBeliefV2的库发展而来,它是一个公司内部的深度神经网络库,隶属于谷歌大脑项目.有一些人认为Te…
计算机视觉.自然语言处理和语音识别是目前深度学习领域很热门的三大应用方向. 计算机视觉学习,推荐阅读<深度学习之PyTorch实战计算机视觉>.学到人工智能的基础概念及Python 编程技能,掌握PyTorch 的使用方法,学到深度学习相关的理论知识,比如卷积神经网络.循环神经网络.自动编码器,等等.在掌握深度学习理论和编程技能之后,还会学到如何基于PyTorch 深度学习框架实战计算机视觉.<深度学习之PyTorch实战计算机视觉>中的大量实例在循序渐进地学习的同时,不断地获得成…
Theano https://github.com/Theano/Theano 描述: Theano 是一个python库, 允许你定义, 优化并且有效地评估涉及到多维数组的数学表达式. 它与GPUs一起工作, 并且在符号微分方面表现优秀. 文档: http://deeplearning.net/software/theano/ 概述: Theano是数值计算的主力, 它支持了许多我们列表当中的其他的深度学习框架. Theano由 frederic bastien 创建, 这是蒙特利尔大学机器学…
20 个顶尖的 Python 机器学习开源项目 机器学习 2015-06-08 22:44:30 发布 您的评价: 0.0 收藏 1收藏 我们在Github上的贡献者和提交者之中检查了用Python语言进行机器学习的开源项目,并挑选出最受欢迎和最活跃的项目.” 图1:在GitHub上用Python语言机器学习的项目,图中颜色所对应的Bob, Iepy, Nilearn, 和NuPIC拥有最高的价值. 1. Scikit-learn www.github.com/scikit-learn/scik…
随着大数据和AI业务的不断融合,大数据分析和处理过程中,通过深度学习技术对非结构化数据(如图片.音频.文本)进行大数据处理的业务场景越来越多.本文会介绍Spark如何与深度学习框架进行协同工作,在大数据的处理过程利用深度学习框架对非结构化数据进行处理. Spark介绍 Spark是大规模数据处理的事实标准,包括机器学习的操作,希望把大数据处理和机器学习管道整合. Spark使用函数式编程范式扩展了MapReduce模型以支持更多计算类型,可以涵盖广泛的工作流.Spark使用内存缓存来提升性能,因…
本文为微信公众号[深度学习大讲堂]特约稿,转载请注明出处 虚拟框架杀入 从发现问题到解决问题 半年前的这时候,暑假,我在SIAT MMLAB实习. 看着同事一会儿跑Torch,一会儿跑MXNet,一会儿跑Theano. SIAT的服务器一般是不给sudo权限的,我看着同事挣扎在编译这一坨框架的海洋中,开始思考: 是否可以写一个框架: import xx.tensorflow as tensorflow import xx.mxnet as mxnet import xx.theano as th…
[导读]Kears作者François Chollet刚刚在Twitter贴出最近三个月在arXiv提到的深度学习框架,TensorFlow不出意外排名第一,Keras排名第二.随后是Caffe.PyTorch和Theano,再次是MXNet.Chainer和CNTK. Keras作者François Chollet刚刚在Twitter贴出一张图片,是近三个月来arXiv上提到的深度学习开源框架排行: TensorFlow排名第一,这个或许并不出意外,Keras排名第二,随后是Caffe.PyT…
TheanoTheano在深度学习框架中是祖师级的存在.Theano基于Python语言开发的,是一个擅长处理多维数组的库,这一点和numpy很像.当与其他深度学习库结合起来,它十分适合数据探索.它为执行深度学习中大规模神经网络算法的运算所设计.其实,它可以被更好的理解为一个数学表达式的编辑器:用符号式语言定义你想要的结果,该框架会对你的程序进行编译,来高效运行于GPU或CPU.它与后来出现的TensorFlow功能十分相似,因而两者常常被放在一起比较.它们本身都偏底层,同样的,Theano 像…
上一节,我们已经学会了基于PyTorch深度学习框架高效,快捷的搭建一个神经网络,并对模型进行训练和对参数进行优化的方法,接下来让我们牛刀小试,基于PyTorch框架使用神经网络来解决一个关于手写数字识别的计算机视觉问题,评价我们搭建的模型的标准是它是否能准确的对手写数字图片进行识别. 其具体的过程是:先使用已经提供的训练数据对搭建好的神经网络模型进行训练并完成参数优化,然后使用优化好的模型对测试数据进行预测,对比预测值和真实值之间的损失值,同时计算出结果预测的准确率.在将要搭建的模型中会使用到…
最近在学习PyTorch框架,买了一本<深度学习之PyTorch实战计算机视觉>,从学习开始,小编会整理学习笔记,并博客记录,希望自己好好学完这本书,最后能熟练应用此框架. PyTorch是美国互联网巨头Facebook在深度学习框架Torch的基础上使用Python重写的一个全新的深度学习框架,它更像NumPy的替代产物,不仅继承了NumPy的众多优点,还支持GPUs计算,在计算效率上要比NumPy有更明显的优势:不仅如此,PyTorch还有许多高级功能,比如拥有丰富的API,可以快速完成深…
开源的深度学习神经网络正步入成熟,而现在有许多框架具备为个性化方案提供先进的机器学习和人工智能的能力.那么如何决定哪个开源框架最适合你呢?本文试图通过对比深度学习各大框架的优缺点,从而为各位读者提供一个参考.你最看好哪个深度学习框架呢? 现在的许多机器学习框架都可以在图像识别.手写识别.视频识别.语音识别.目标识别和自然语言处理等许多领域大展身手,但却并没有一个完美的深度神经网络能解决你的所有业务问题.所以,本文希望下面的图表和讲解能够提供直观方法,帮助读者解决业务问题. 下图总结了在 GitH…
“什么情况!?居然不是黑色背景+白色文字的命令行.对,今天要介绍的是一个拥有白嫩的用户界面的深度学习框架.” 人工智能.神经网络.深度学习,这些概念近年已经涌入每个人的生活中,我想很多人早就按捺不住想亲自试一试怎么玩了. 然额,百度一下相关教程后,本来对人工智能怀揣着美好憧憬的壮志青年开始怀疑人生了. “我该先复习哪些大学课程?” “好像必须搞个Linux的系统,还得熟练Python...好麻烦" “Tensorflow, Keras, Caffe...这些都什么玩意儿,我该选哪个下手?” “这…