Spark Mllib之分层抽样】的更多相关文章

Spark中组件Mllib的学习之基础概念篇 1.解释 分层抽样的概念就不讲了,具体的操作: RDD有个操作可以直接进行抽样:sampleByKey和sample等,这里主要介绍这两个 (1)将字符串长度为2划分为层2,字符串长度为3划分为层1,对层1和层2按不同的概率进行抽样 数据 aa bb cc dd ee aaa bbb ccc ddd eee 比如: val fractions: Map[Int, Double] = List((1, 0.2), (2, 0.8)).toMap //设…
不多说,直接上干货! 具体,见 Spark Mllib机器学习实战的第4章 Mllib基本数据类型和Mllib数理统计…
  http://product.dangdang.com/23829918.html Spark作为新兴的.应用范围最为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相关内容的学习与开发,其中 MLlib是 Spark框架使用的核心.本书是一本细致介绍 Spark MLlib程序设计的图书,入门简单,示例丰富. 本书分为 12章,从 Spark基础安装和配置开始,依次介绍 MLlib程序设计基础.MLlib的数据对象构建.MLlib中 RDD使用介绍,各种分类.聚…
参考学习链接:http://www.itnose.net/detail/6269425.html 机器学习相关算法,建议初学者去看看斯坦福的机器学习课程视频:http://open.163.com/special/opencourse/machinelearning.html(已经被翻译了) 所有文中示例见:http://spark.apache.org/docs/latest/mllib-statistics.html 统计工具(1)摘要统计我们通过统计中可用的colStats函数提供RDD…
一, jar依赖,jsc创建. package ML.BasicStatistics; import com.google.common.collect.Lists; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaDoubleRDD; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.Java…
本章导读 机器学习(machine learning, ML)是一门涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多领域的交叉学科.ML专注于研究计算机模拟或实现人类的学习行为,以获取新知识.新技能,并重组已学习的知识结构使之不断改善自身. MLlib是Spark提供的可扩展的机器学习库.MLlib已经集成了大量机器学习的算法,由于MLlib涉及的算法众多,笔者只对部分算法进行了分析,其余算法只是简单列出公式,读者如果想要对公式进行推理,需要自己寻找有关概率论.数理统计.数理分析等方面的专…
val path = "/usr/data/lfw-a/*" val rdd = sc.wholeTextFiles(path) val first = rdd.first println(first) val files = rdd.map { case (fileName, content) => fileName.replace("file:", "") } println(files.first)println(files.coun…
Spark MLlib提供了一些基本的统计学的算法,下面主要说明一下: 1.Summary statistics 对于RDD[Vector]类型,Spark MLlib提供了colStats的统计方法,该方法返回一个MultivariateStatisticalSummary的实例.他封装了列的最大值,最小值,均值.方差.总数.如下所示: val conf = new SparkConf().setAppName("Simple Application").setMaster(&quo…
MLlib 支持存放在单机上的本地向量和矩阵,也支持通过多个RDD实现的分布式矩阵.因此MLlib的数据类型主要分为两大类:一个是本地单机向量:另一个是分布式矩阵.下面分别介绍一下这两大类都有哪些类型: 1.Local vector(本地向量) (1)Vector 最基本的类型是Vector,该类型索引是从0开始的整型类型,值类型是double类型.并提供了两个实现:DenseVector and SparseVector.但是一把情况下都是推荐使用工厂方法来创建Vector.如下所示: imp…
http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或random forest也是常以其为基础的 决策树算法本身参考之前的blog,其实就是贪婪算法,每次切分使得数据变得最为有序   那么如何来定义有序或无序? 无序,node impurity 对于分类问题,我们可以用熵entropy或Gini来表示信息的无序程度 对于回归问题,我们用方差Variance…