题目:http://uoj.ac/problem/54 10分还要用 Lucas 定理囧...因为模数太小了不能直接算... #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int rd() { ,f=; char ch=getchar(); ; ch=getchar();} +ch-',ch=getchar(); retu…
考虑枚举相邻点距离差的比例.显然应使比例值gcd为1以保证不重复统计.确定比例之后,各维坐标的方案数就可以分开考虑.设比例之和为k,则若坐标上限为m,该维坐标取值方案数即为Σm-ki (i=1~⌊m/k⌋),也即⌊m/k⌋·m-k·(⌊m/k⌋+1)·⌊m/k⌋/2,设其为f(m,k).总方案数即将各维方案数相乘,设为F(k). 于是得到答案即为ΣkΣa1Σa2……Σac-2 [gcd(a1,a2,……,ac-2,k)=1]·F(k).套路一波,得到Σk F(k)·(Σd μ(d)·g(k/d)…
[题意]给定a和b,求满足a<=lcm(x,y)<=b && x<y的数对(x,y)个数.a,b<=10^11. [算法]莫比乌斯反演+组合计数 [题解]★具体推导过程参考:51nod1222 最小公倍数计数 过程运用到的技巧: 1.将所有i和j的已知因子提取出来压缩上届. 2.将带有μ(k)的k提到最前面,从而后面变成单纯的三元组形式. 最终形式: $$ans=\sum_{k=1}^{\sqrt n} \mu(k)  \sum_{d}    \sum_{i} \s…
1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \frac{a}{gcd}, \frac{b}{gcd}\),然后\(\mu\)代入,就是 \[ \sum_{d=1}^{\sqrt{n}}\mu(d) \sum_i \sum_j \sum_k [ijk \le \frac{n}{d^2}] \] 问题就是怎么求后面的式子了 一开始我是 \[ f(n) = \s…
求$\sum_{i = 1}^{n} \sum_{j = 1}^{i} [lcm(i, j) \le n]$因为这样不好求,我们改成求$\sum_{i = 1}^{n} \sum_{j = 1}^{n} [lcm(i, j) \le n]$.这样求出来的值把除了(i, i)这样的点对以外所有点对都重复统计了一次.因此$ans = \frac{rnt + n}{2}$(先加上没有重复统计的点对个数,使得所有点对都重复统计了一次,然后再除2就是不重复统计的点对个数)接下来就是化式子了...$$\su…
要求$ans=\sum_{i=1}^n \sum_{j=1}^m (n-i)(m-j)(gcd(i,j)-1)$ 可以看做枚举矩阵的大小,然后左下右上必须取的方案数. 这是斜率单增的情况 然后大力反演即可. 最后$ans=ans*2+C(n,3)*m+C(m,3)*n$ $\Theta (n \log n)$ #include <cstdio> #include <cstring> #include <iostream> #include <algorithm&g…
Luogu3455:莫比乌斯反演进行GCD计数 莫比乌斯反演就是用来解决这一类问题的,通常f函数是要求的那个,F函数是显然的 这样利用F的结果就可以推出来f的结果 在计算结果的时候整除分快儿一下就可以很快了 #include<cstdio> #include<algorithm> using std::min; ; int cnt; long long ans; bool vis[maxn]; int mu[maxn],sum[maxn]; long long prim[maxn]…
[BZOJ3434][Wc2014]时空穿梭 Description Input 第一行包含一个正整数T,表示有T组数据求解每组数据包含两行,第一行包含两个正整数N,C(c>=2),分别表示空间的维数和需要选择的暂停点个数第二行包含N个正整数,依次表示M1,M2....Mn Output 有T行,每行一个非负整数,依次对应每组数据的答案. Sample Input 3 2 3 3 4 3 3 3 4 4 4 4 5 9 7 8 Sample Output 2 4 846 HINT 样例数据第一组…
题目描述 小 X 驾驶着他的飞船准备穿梭过一个 \(n\) 维空间,这个空间里每个点的坐标可以用 \(n\) 个实数表示,即 \((x_1,x_2,\dots,x_n)\). 为了穿过这个空间,小 X 需要在这个空间中选取 \(c\)(\(c\geq 2\))个点作为飞船停留的地方,而这些点需要满足以下三个条件: 每个点的每一维坐标均为正整数,且第 \(i\) 维坐标不超过 \(m_i\). 第 \(i+1\)(\(1\leq i<c\))个点的第 \(j\)(\(1\leq j\leq n\)…
题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) = 1][(j, k) = 1][(i, k) = 1]\) $a, b, c \leq 5*10^4 $ 首先莫比乌斯反演 $Ans = \sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) = 1…