"Dlib 是一个现代化的 C ++ 工具包,包含用于创建复杂软件的机器学习算法和工具 " .它使您能够直接在 Python 中运行许多任务,其中一个例子就是人脸检测. 安装 dlib 并不像只做一个 "pip install dlib" 那么简单,因为要正确配置和编译 dlib ,您首先需要安装其他系统依赖项.如果你按照这里描述的步骤,它应该很容易让 dlib 启动并运行.(在本文中,我将介绍如何在 Mac 上安装 dlib ,但如果您使用的是 Ubuntu ,请…
Python 的 JPype 模块调用 Jar 包 背景与需求 最近学习并安装使用了HttpRunner框架去尝试做接口测试,并有后续在公司推广的打算. HttpRunner由Python开发,调用接口时需要依赖Python:而大多数公司的扩展工具包使用Java编写,测试同学使用Python重新实现不显示. 目前网上的资料均停留在对单个JAR包的引用于使用上,对于使用多个有依赖关系的JAR包的方法并未提及. JPype介绍 1. JPype是什么: JPype是一个能够让 python 代码方便…
背景与需求 最近学习并安装使用了HttpRunner框架去尝试做接口测试,并有后续在公司推广的打算. HttpRunner由Python开发,调用接口时需要依赖Python:而大多数公司的扩展工具包使用Java编写,测试同学使用Python重新实现不显示. 目前网上的资料均停留在对单个JAR包的引用于使用上,对于使用多个有依赖关系的JAR包的方法并未提及. JPype介绍 1. JPype是什么: JPype是一个能够让 python 代码方便地调用 Java 代码的工具,从而克服了 pytho…
python3只支持pymysql(cpython >= 2.6 or >= 3.3,mysql >= 4.1),python2支持mysqldb. 两个例子: import pymysql db = pymysql.connect('localhost', 'root', '123456', 'crawlsql') cursor = db.cursor() try: create_table_sql = "CREATE TABLE IF NOT EXISTS `table`…
OpenCV是如今最流行的计算机视觉库,而我们今天就是要学习如何安装使用OpenCV,以及如何去访问我们的摄像头.然后我们一起来看看写一个人脸检测程序是如何地简单,简单到只需要几行代码. 在开始之前,我假设你已经对Python有一定的了解.当然,如果你觉得你还不够格,这里有推荐一些学习Python的电子书,你可以先学习下Python,如此可以让你更好地理解接下来的步骤.另外,这里还推荐一本电子书来学习OpenCV. 好,不浪费时间,开始吧. To setup opencv in python e…
人脸检测方法有许多,比如opencv自带的人脸Haar特征分类器和dlib人脸检测方法等. 对于opencv的人脸检测方法,优点是简单,快速:存在的问题是人脸检测效果不好.正面/垂直/光线较好的人脸,该方法可以检测出来,而侧面/歪斜/光线不好的人脸,无法检测.因此,该方法不适合现场应用.而对于dlib人脸检测方法采用64个特征点检测,效果会好于opencv的方法识别率会更高,本文会分别采用这几种方法来实现人脸识别.那个算法更好,跑跑代码就知道. 实时图像捕获 首先在进行人脸识别之前需要先来学点O…
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS等: 本篇概览 如果您看过<三分钟极速体验:Java版人脸检测>一文,甚至动手实际操作过,您应该会对背后的技术细节感兴趣,接下来就请随欣宸一起动手实战,从无到有将这个应用开发出来: 首先确定咱们的目标: 开发出java版的人脸检测应用 将此应用制作成docker镜像 在docker环境运行这个应用…
文章目录: OpenCV安装 安装numpy 安装opencv OpenCV使用 OpenCV测试 效果图: 注意: 图片人脸检测 程序要求: 技术实现思路 注意 本文使用的环境是:Windows+Python3.x+Anaconda 安装Python以及Anaconda的步骤本文不予以讲解了,下面主要讲的是OpenCV的安装以及使用. OpenCV安装 安装numpy 如果没有numpy的话要先下载numpy,一般安装完Anaconda后就会自带很多库,这也是我推荐使用Anaconda的原因.…
import cv2 import matplotlib.pyplot as plt %matplotlib inline # 提取预训练的人脸检测模型,提前下载好的模型 face_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_alt.xml') # 加载彩色(通道顺序为BGR)图像 img = cv2.imread('images/9f510fb30f2442a70a9add3dd143ad4bd01…
人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型 经过前面稍显罗嗦的准备工作,现在,我们终于可以尝试训练我们自己的卷积神经网络模型了.CNN擅长图像处理,keras库的tensorflow版亦支持此种网络模型,万事俱备,就放开手做吧.前面说过,我们需要通过大量的训练数据训练我们的模型,因此首先要做的就是把训练数据准备好,并将其输入给CNN.前面我们已经准备好了2000张脸部图像,但没有进行标注,并且还需要将数据加载到内存,以方便输入给CNN.因此,第一步工作就是加载并…