并非广告~实在是太良心了,所以费时间给他们点赞一下~ SuperVessel云平台是IBM中国研究院和中国系统与技术中心基于POWER架构和OpenStack技术共同构建的, 支持开发者远程开发的免费科研云平台.除支持虚拟机和容器服务外还提供:大数据Hadoop,Spark开发环境.Python科学计算开发环境(可替代Matlab).Java Eclipse/Bluefish运行环境.C/C++运行环境 只需任意一个邮箱,1分钟就可以申请到服务器,没见过更快的了-使用之后觉得不足之处: 1.由于…
摘要:随着边缘设备数量指数级增长以及设备性能的提升,边云协同机器学习应运而生,以期打通机器学习的最后一公里. 本文分享自华为云社区<支持边云协同终身学习特性,KubeEdge子项目Sedna 0.3.0版本发布! >,原文作者:技术火炬手 . 1.当前机器学习落地挑战 当前机器学习落地有哪些问题? 近二十年来,机器学习已广泛应用于数据挖掘.计算机视觉.自然语言处理.生物特征识别.搜索引擎.医学诊断.检测信用卡欺诈.证券市场分析.DNA序列测序.语音和手写识别.战略游戏和机器人等领域. 在实际业…
Auto-Keras 是一个开源的自动机器学习库.Auto-Keras 的终极目标是允许所有领域的只需要很少的数据科学或者机器学习背景的专家都可以很容易的使用深度学习.Auto-Keras 提供了一系列函数来自动搜索深度学习模型的网络和超参数. 安装: pip install autokeras 样例: import autokeras as ak clf = ak.ImageClassifier() clf.fit(x_train, y_train) results = clf.predict…
“什么情况!?居然不是黑色背景+白色文字的命令行.对,今天要介绍的是一个拥有白嫩的用户界面的深度学习框架.” 人工智能.神经网络.深度学习,这些概念近年已经涌入每个人的生活中,我想很多人早就按捺不住想亲自试一试怎么玩了. 然额,百度一下相关教程后,本来对人工智能怀揣着美好憧憬的壮志青年开始怀疑人生了. “我该先复习哪些大学课程?” “好像必须搞个Linux的系统,还得熟练Python...好麻烦" “Tensorflow, Keras, Caffe...这些都什么玩意儿,我该选哪个下手?” “这…
一个标准的数据分析码农必须要配一台超薄笔记本和一台高性能服务器,笔记本是日常使用,各种小问题的解决,同时也是用于远程连接终端服务器:高性能服务器就是核心的处理数据的平台,CPU.内存.硬盘容量.GPU等都必须要能满足数据分析和建模的要求. 笔记本强烈建议是Mac家的,无论是流畅度.美学.做工都绝对秒杀其他平台,唯一的缺点就是贵:服务器没有选择,只能用Linux了,ubuntu也是强烈推荐.目前除了打游戏,好像实在是找不到需要用Windows的理由了,奈何马上要奔3了,游戏最多也就是偶尔消遣一下,…
前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab2015b,16G内存,2T机械硬盘 实验内容:Exercise:Convolution and Pooling.从2000张64*64的RGB图片(它是the STL10 Dataset的一个子集)中提取特征作为训练数据集,训练softmax分类器,然后从3200张64*64的RGB图片(它是th…
使用卷积神经网络(CNN)架构的深度学习(DL)现在是解决图像分类任务的标准解决方法.但是将此用于处理3D数据时,问题变得更加复杂.首先,可以使用各种结构来表示3D数据,所述结构包括: 1  体素网格 2   点云 3  多视图 4  深度图 对于多视图和深度图的情况,该问题被转换为在多个图像上使用2D CNN解决.通过简单定义3D卷积核,可以将2D CNN的扩展用于3D Voxel网格.但是,对于3D点云的情况,目前还不清楚如何应用DL工具.但是之前也已经有几种解决办法了,具体可以参看 htt…
这是<使用亚马逊云服务器EC2做深度学习>系列的第四篇文章. (一)申请竞价实例  (二)配置Jupyter Notebook服务器  (三)配置TensorFlow  (四)配置好的系统镜像 配置深度学习的环境是一个非常繁琐的过程.它要求你对Linux命令有一定地了解,与此同时各种深度学习库.驱动更新十分频繁,有可能明天教程里的安装脚本就不管用了. AMI AMI就是解决方法.AMI是可以直接在EC2启动的系统镜像,有的系统镜像已经配置好了使用GPU的深度学习环境,这样启动实例后,你就可以直…
这是<使用亚马逊云服务器EC2做深度学习>系列的第三篇文章. (一)申请竞价实例  (二)配置Jupyter Notebook服务器  (三)配置TensorFlow  (四)配置好的系统镜像 TensorFlow是Google发布的深度学习框架,支持Python和C++的接口.TensorFlow既可以用于学术研究,也可以用于生产环境.许多Google的内部服务,就使用了TensorFlow,比如Gmail.语音识别等. 网络上TensorFlow的教程也很丰富,官方文档在第一时间就被翻译成…
这是<使用亚马逊云服务器EC2做深度学习>系列的第二篇文章. (一)申请竞价实例  (二)配置Jupyter Notebook服务器  (三)配置TensorFlow  (四)配置好的系统镜像 Jupyter Notebook是Python中的一个开源编辑器.它的主界面就是一个网页,可以在浏览器中远程执行程序. 同时它可以方便地混杂代码和程序的说明,有许多TensorFlow的教程就是用Jupyter Notebook来编写的. 出于安全的考虑,Jupyter Notebook默认只能在本地访…