Spark Streaming数据限流简述】的更多相关文章

  Spark Streaming对实时数据流进行分析处理,源源不断的从数据源接收数据切割成一个个时间间隔进行处理:   流处理与批处理有明显区别,批处理中的数据有明显的边界.数据规模已知:而流处理数据流并没有边界,也未知数据规模:   由于流处理的数据流特征,使之数据流具有不可预测性,而且数据处理的速率还与硬件.网络等资源有关,在这种情况下如不对源源不断进来的数据流速率进行限制,那当Spark节点故障.网络故障或数据处理吞吐量下来时还有数据不断流进来,那将有可能将出现OOM进而导致Spark…
原文链接:Spark Streaming:大规模流式数据处理的新贵 摘要:Spark Streaming是大规模流式数据处理的新贵,将流式计算分解成一系列短小的批处理作业.本文阐释了Spark Streaming的架构及编程模型,并结合实践对其核心技术进行了深入的剖析,给出了具体的应用场景及优化方案. 提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处…
转自:http://www.csdn.net/article/2014-01-28/2818282-Spark-Streaming-big-data 提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处理可以分为如以下三个类型. 复杂的批量数据处理(batch data processing),通常的时间跨度在数十分钟到数小时之间. 基于历史数据的交互式…
SparkStreaming 源码分析 一节中从源码角度,描述了Streaming执行时代码的调用过程.下边就接收转化阶段过程再简单分析一下,为分析backpressure作准备. SparkStreaming的全过程分为两个阶段:数据接收转化阶段和Job产生与执行阶段.两个阶段通过数据接收转化阶段产生的Block联系在一起.下图是依据对基于Recevier的数据接收源转化部分源码分析所做. 数据接收转化过程可以分为如下几个关键步骤: Receiver接收外部数据流,其将接收的数据流交由Bloc…
本讲从二个方面阐述: 数据清理原因和现象 数据清理代码解析 Spark Core从技术研究的角度讲 对Spark Streaming研究的彻底,没有你搞不定的Spark应用程序. Spark Streaming一直在运行,不断计算,每一秒中在不断运行都会产生大量的累加器.广播变量,所以需要对对象及 元数据需要定期清理.每个batch duration运行时不断触发job后需要清理rdd和元数据.Clinet模式 可以看到打印的日志,从文件日志也可以看到清理日志内容. 现在要看其背后的事情: Sp…
本期内容 : 数据接收架构设计模式 数据接收源码彻底研究 一.Spark Streaming数据接收设计模式   Spark Streaming接收数据也相似MVC架构: 1. Mode相当于Receiver存储数据,C级别的,Receiver是个抽象因为他有好多的Receiver 2. ReceiverSupervisor 是控制器,因为Receiver启动是靠ReceiverSuperior启动的,及接收到的数据交给ReceiverSuperior存储数据的 3. Driver会获得源数据,…
官网文档:<http://spark.apache.org/docs/latest/streaming-programming-guide.html#a-quick-example> Spark Streaming提供的提供的理念是一个批次处理一定时间段内的数据,一批次处理接收到的这一批次的数据:而Structured Streaming提供的理念是使用DataFrame/DataSet方式接收流,这样的流是一个可以看做为一个无界的大表,可以持续输出统计结果,而统计结果也会跟随时间(流数据的流…
本节的主要内容: 一.数据接受架构和设计模式 二.接受数据的源码解读 Spark Streaming不断持续的接收数据,具有Receiver的Spark 应用程序的考虑. Receiver和Driver在不同进程,Receiver接收数据后要不断给Deriver汇报. 因为Driver负责调度,Receiver接收的数据如果不汇报给Deriver,Deriver调度时不会把接收的数据计算入调度系统中(如:数据ID,Block分片). 思考Spark Streaming接收数据: 不断有循环器接收…
第1章 Spark Streaming 概述1.1 什么是 Spark Streaming1.2 为什么要学习 Spark Streaming1.3 Spark 与 Storm 的对比第2章 运行 Spark Streaming第3章 架构与抽象第4章 Spark Streaming 解析4.1 初始化 StreamingContext4.2 什么是 DStreams4.3 DStream 的输入4.3.1 基本数据源4.3.2 高级数据源4.4 DStream 的转换4.4.1 无状态转化操作…
Spark 定制版:005~贯通Spark Streaming流计算框架的运行源码   本讲内容: a. 在线动态计算分类最热门商品案例回顾与演示 b. 基于案例贯通Spark Streaming的运行源码 注:本讲内容基于Spark 1.6.1版本(在2016年5月来说是Spark最新版本)讲解. 上节回顾 上节课主要从事务视角为大家探索Spark Streaming架构机制:Spark Streaming程序分成而部分,一部分是Driver,另外一部分是Executor.通过对Driver和…