Spark: Job in detail】的更多相关文章

1.sc.runJob -> dagScheduler.runJob -> submitJob 2.DAGSchedueler::submitJob 会创建 JobSubmitted 的 event 发给内嵌类 eventProcessActor 3.eventPRocessActor 在接收到 JobSubmmitted 之后调用 processEvent 处理函数 4.job 到 stage 的转换,生成 finalStage 并提交运行,关键是调用 submitStage 5.在 Sub…
没用过IDEA工具,听说跟Eclipse差不多,sbt在Idea其实就等于maven在Eclipse.Spark运行在JVM中,所以要在Idea下运行spark,就先要安装JDK 1.8+ 然后加入Scala和Spark的依赖包就可以进行开发了,不要安装低版本的JDK. 先下载Idea的社区版 https://www.jetbrains.com/idea/download/download-thanks.html?platform=windows&code=IIC Scala.Spark环境 安…
1.zybo cluster 架构简述: 1.1 zybo cluster 包含5块zybo 开发板组成一个集群,zybo的boot文件为digilent zybo reference design提供的启动文件,文件系统采用arm ubuntu.ip地址自上而下为192.168.1.1~5,hostname自上而下为spark1~5,另外由于sdka写入速度为2.3Mps,因而每个zybo卡另外配置一个Sandisk Cruzer Blade 32GB 作为usb拓展存储设备,写速度为4Mps…
本文地址:http://www.cnblogs.com/jying/p/3671767.html 这么个问题又耗费了偶一天时间,真是羞愧.. 上午从官网svn地址下载最新的 spark 包,总是下载失败,而且下载速度超慢...于是从群友那里要来一份 2.6.3版,配置到 ant 设置的时候总是报错,灰常不爽!根据报的错各种尝试,各种失败,灰常受打击...就这样耗了半天时间毫无进展,临下班的时候,决定赌一把,从官网重新下载 2.5.8 版,因为网上的源码配置教程都是关于 2.5.8 版的(嗯,就是…
Spark is a compelling multi-purpose platform for use cases that span investigative, as well as operational, analytics. Data science is a broad church. I am a data scientist — or so I’ve been told — but what I do is actually quite different from what…
参考资料: Spark和RDD模型研究:http://itindex.net/detail/51871-spark-rdd-模型 理解Spark的核心RDD:http://www.infoq.com/cn/articles/spark-core-rdd/ Spark RDD详解:http://f.dataguru.cn/thread-475874-1-1.html http://developer.51cto.com/art/201309/410276_1.htm…
Spark是基于内存的分布式计算引擎,以处理的高效和稳定著称.然而在实际的应用开发过程中,开发者还是会遇到种种问题,其中一大类就是和性能相关.在本文中,笔者将结合自身实践,谈谈如何尽可能地提高应用程序性能. 分布式计算引擎在调优方面有四个主要关注方向,分别是CPU.内存.网络开销和I/O,其具体调优目标如下: 提高CPU利用率. 避免OOM. 降低网络开销. 减少I/O操作. 第1章 数据倾斜 数据倾斜意味着某一个或某几个Partition中的数据量特别的大,这意味着完成针对这几个Partiti…
Part1. 各种参数的意义及如何配置 Spark官方文档——Spark Configuration(Spark配置) http://www.cnblogs.com/vincent-hv/p/3316502.html Standalone spark-env.sh 配置http://www.sxt.cn/u/2839/blog/4730 spark1.0.0属性配置http://blog.csdn.net/book_mmicky/article/details/29472439 spark-su…
spark集群中的节点可以只处理自身独立数据库里的数据,然后汇总吗? 修改 我将spark搭建在两台机器上,其中一台既是master又是slave,另一台是slave,两台机器上均装有独立的mongodb数据库.我是否可以让它们只统计自身数据库的内容,然后将结果汇总到一台服务器上的数据库里?目前我的代码如下,但是最终只统计了master里的数据,另一个worker没有统计上. val config = new Configuration() //以下代码表示只统计本机数据库上的数据,猜测问题可能…
参考学习链接:http://www.itnose.net/detail/6269425.html 机器学习相关算法,建议初学者去看看斯坦福的机器学习课程视频:http://open.163.com/special/opencourse/machinelearning.html(已经被翻译了) 所有文中示例见:http://spark.apache.org/docs/latest/mllib-statistics.html 统计工具(1)摘要统计我们通过统计中可用的colStats函数提供RDD…