所看到的. 首先强调一下,这个结构也是一个解决对照两个句子类似性的通用RNN解决方式,不只能够使用在问答社区.凡是涉及到对照两个句子或者实体关系的场合全然能够套用这个模型来解决.这点希望读者注意. 首先.由于我们面临的问题是对照两个问题Qi和Qj是否语义同样,那么对于RNN来说存在一个神经网络的输入层怎样构造的难题.CNN解决这类问题就比較直观.一般一个输入套上一个CNN来抽取出句子特征.然后再套上MLP神经网络来表达两者之间的关系就可以.RNN表达单个输入句子是非常直观的,可是直接表达两个句子…
翻车2次,试水2次,今天在B站终于成功直播了. 人气11万. 主要讲了语言模型.词向量的训练.ELMo模型(深度.双向的LSTM模型) 预训练与词向量 词向量的常见训练方法 深度学习与层次表示 LSTM, BI-LSTM模型回顾 基于BI-LSTM的ELMo算法 总结…
使用IMDB情绪数据来比较CNN和RNN两种方法,预处理与上节相同 from __future__ import print_function import numpy as np import pandas as pd from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import Dense,Dropout,Embedding,LSTM,Bidirect…
目录 前言 1.背景知识 1.1.词向量 1.2.one-hot模型 1.3.word2vec模型 1.3.1.单个单词到单个单词的例子 1.3.2.单个单词到单个单词的推导 2.CBOW模型 3.skim-gram模型 4.Hierarchical Softmax 4.1.CBOW中的Hierarchical Softmax 4.2.CBOW中的梯度计算 5.Negative Sampling 5.1.Negative Sampling计算思路 5.2.Negative Sampling的方法…
自然语言处理的第一步就是获取词向量,获取词向量的方法总体可以分为两种两种,一个是基于统计方法的,一种是基于语言模型的. 1 Glove - 基于统计方法 Glove是一个典型的基于统计的获取词向量的方法,基本思想是:用一个词语周边其他词语出现的次数(或者说两个词共同出现的次数)来表示每一个词语,此时每个词向量的维度等于词库容量,每一维存储着词库对应序号的词语出现在当前词语周围的次数,所有这些词向量组成的矩阵就是共现矩阵. 我们也可以换一个角度来理解共现矩阵,共现矩阵就是两个词同时出现的次数,共现…
PaddlePaddle出教程啦,教程一部分写的很详细,值得学习. 一期涉及新手入门.识别数字.图像分类.词向量.情感分析.语义角色标注.机器翻译.个性化推荐. 二期会有更多的图像内容. 随便,帮国产框架打广告:加入TechWriter队伍,强大国产深度学习利器.https://github.com/PaddlePaddle/Paddle/issues/787 . . 一.情感分类模型介绍CNN.RNN.LSTM.栈式双向LSTM 教程链接:http://book.paddlepaddle.or…
http://spaces.ac.cn/archives/3942/ 暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下.模型的效果不是最好的,但是胜在“端到端”,迁移性强,估计对大家会有一定的参考价值. 比赛的主题是“核心实体识别”,其实有两个任务:核心识别 + 实体识别.这两个任务虽然有关联,但在传统自然语言处理程序中,一般是将它们分开处理的,而这次需要将两个任务联合在一起.如果只看“核心识别”,那就是传统的关键词抽取任务了,不同的是,传统的纯粹基于统计的…
RNN(Recurrent Neural Networks,循环神经网络)是一种具有短期记忆能力的神经网络模型,可以处理任意长度的序列,在自然语言处理中的应用非常广泛,比如机器翻译.文本生成.问答系统.文本分类等. 但由于梯度爆炸或梯度消失,RNN存在长期依赖问题,难以建立长距离的依赖关系,于是引入了门控机制来控制信息的累积速度,包括有选择地加入新信息,并有选择地遗忘之前积累的信息.比较经典的基于门控的RNN有LSTM(长短期记忆网络)和GRU(门控循环单元网络). 有关RNN,LSTM和GRU…
目录 词向量简介 1. 基于one-hot编码的词向量方法 2. 统计语言模型 3. 从分布式表征到SVD分解 3.1 分布式表征(Distribution) 3.2 奇异值分解(SVD) 3.3 基于SVD的词向量方法 4. 神经网络语言模型(Neural Network Language Model) 5. Word2Vec 5.1 两个模型 5.2 两个提速手段 5.3一些预处理细节 5.4 word2vec的局限性 6. GloVe 6.1 统计共现矩阵 6.2 Glove的由来 6.3…
0. 词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化. NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representation,这种方法把每个词表示为一个很长的向量.这个向量的维度是词表大小,其中绝大多数元素为 0,只有一个维度的值为 1,这个维度就代表了当前的词. 举个栗子, “话筒”表示为 [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ...] “麦克”表示为 [0 0 0 0 0 0 0 0 …