约数定理(two)】的更多相关文章

codeforces1183F 有技巧的暴力 传送门:https://codeforces.com/contest/1183/problem/F 题意: 给你n个数,要你从中选出最多三个数,使得三个数x,y,z互不相等,x,y,z之和最大是多少 题解: n到了2e5,并且有q组数据,所以我们这里需要有技巧的枚举 因为最多只能选取三个数 我们就可以分类讨论 选取一个数 那么这个数一定是最大的那个数 选取两个数 那么这个两个数互不为约数 选取三个数和选取两个数同理 我们将数组排序离散化后,从大到小的…
筛约数个数和 理论基础: 1.对n质因数分解,n=p1^k1 * p2^k2 * p3^k3 …… 则n的约数个数为(k1+1)*(k2+1)*(k3+1)…… 2.线性筛素数时,用i和素数pj来筛掉 i*pj, 其中pj一定是i*pj的最小素因子 如果i是pj的倍数,pj也是i的最小素因子 设t[i] 表示i的约数个数,e[i] 表示i的最小素因子的个数 A.如果i是质数,t[i]=2,e[i]=1 B.如果i不是质数,枚举已有的质数pj i*pj的最小素因子是pj 1.如果i是pj的倍数那么…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3994 题解: 莫比乌斯反演 (先定义这样一个符号[x],如果x为true,则[x]=1,否则[x]=0) 首先有这么一个结论: 令d(x)表示x的约数的个数,那么 $d(nm)=\sum_{i|n}\sum_{j|m}[gcd(i,j)==1]$ 证明: 设$n=p1^{x1}p2^{x2}p3^{x3}\cdots pk^{xk},m=p1^{y1}p2^{y2}p3^{y3}\cdot…
题目描述 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 我听见风来自地铁和人海 我排着队拿着爱的号码牌 城市中人们总是拿着号码牌,不停寻找,不断匹配,可是谁也不知道自己等的那个人是谁.可是燕姿不一样,燕姿知道自己等的人是谁,因为燕姿数学学得好!燕姿发现了一个神奇的算法:假设自己的号码牌上写着数字S,那么自己等的人手上的号码牌数字的所有正约数之和必定等于S. 所以燕姿总是拿着号码牌在地铁和人海找数字(喂!这样真的靠谱吗)可是她…
Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4163  Solved: 2485[Submit][Status][Discuss] Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x ,则称x为反质数.例如,整数1,2,4,6等都是反质数.现在给定一个数N,你能求出不超过N的最大的反质数么 ? Input 一个数N(1<=N<…
在学习循环控制结构的时候,我们经常会看到这样一道例题或习题.问n!末尾有多少个0?POJ 1401就是这样的一道题. [例1]Factorial (POJ 1401). Description The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the…
题意:求\(n!\)的每个因子的因子数. 题解:我们可以对\(n!\)进行质因数分解,这里可以直接用推论快速求出:https://5ab-juruo.blog.luogu.org/solution-p2043, 所以我们可以得到\(n!=p^{k1}_1*p^{k_2}_2*...*p^{k_n}_n\),然后根据约数定理,它的任意一个因子可以表示为\(n!=p^{a1}_1*p^{a_2}_2*...*p^{a_n}_n\ (0\le a_i\le k_i)\),我们将某一个质数\(p^{a_…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * pow*(p2, b) * pow(p3, c) * ... 则其约数个数为:num(x) = (a+1) * (b+1) * (c+1) *... 推导: 由约数定义可知p1^a1的约数有:p1^0, p1^1, p1^2......p1^a1 ,共(a1+1)个;同理p2^a2的约数有(a2+1)个…
Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901). Input The only line contains the two natur…
对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数. 所以,n以内的反质数即为不超过n的约数个数最多的数. 怎样计算约数个数? 约数个数定理:对于一个大于1正整数n可以分解质因数:n=p1^a1*p2^a2*p3^a3*…*pk^ak,则n的正约数的个数就是(a1+1)(a2+1)(a3+1)…(ak+1) .其中a1.a2.a3…ak是p1.p2.p3,…pk的指数.   所以,只需枚举一个数…