割边的tarjan算法】的更多相关文章

与割点唯一一点不同是low[v]>=dfn[u]变为low[v]>dfn[u] 代码如下: bool vis[maxn]; int dfn[maxn],low[maxn]; int cnt; vector<int>gra[maxn]; void cutPoint(int u,int v){ vis[u]=true; dfn[u]=low[u]=++cnt; int child=0; int sz=gra[u].size(); for(int i=0;i<sz;i++){ in…
洛谷割点模板题--传送门 割边:在连通图中,删除了连通图的某条边后,图不再连通.这样的边被称为割边,也叫做桥.割点:在连通图中,删除了连通图的某个点以及与这个点相连的边后,图不再连通.这样的点被称为割点.DFS搜索树:用DFS对图进行遍历时,按照遍历次序的不同,我们可以得到一棵DFS搜索树. 树边:在搜索树中的蓝色线所示,可理解为在DFS过程中访问未访问节点时所经过的边,也称为父子边回边:在搜索树中的橙色线所示,可理解为在DFS过程中遇到已访问节点时所经过的边,也称为返祖边.后向边观察DFS搜索…
tarjan算法是在dfs生成一颗dfs树的时候按照访问顺序的先后,为每个结点分配一个时间戳,然后再用low[u]表示结点能访问到的最小时间戳 以上的各种应用都是在此拓展而来的. 割点:如果一个图去掉某个点,使得图的连通分支数增加,那么这个点就是割点 某个点是割点,当且仅当这个点的后代没有连回自己祖先的边.即low[v] >= dfn[u]     , v是u的后代 需要注意的是根结点的特判,因为根结点没有祖先,根结点是割点,当且仅当根结点有两个以上的儿子. 问题:重边对该算法有影响吗?没有影响…
题意:求无向图的割边. 思路:tarjan算法求割边,访问到一个点,如果这个点的low值比它的dfn值大,它就是割边,直接ans++(之所以可以直接ans++,是因为他与割点不同,每条边只访问了一遍). 需要注意的就是此处有多重边,题目中要求输出确定的不能被删除的边,而多重边的保留不是可以确定的,所以多重边都是不可以被保留的,我们可以在邻接表做一个flag的标记,判断他是不是多重边. 注意建图的时候数组应该是m × 2,因为这里是无向边,当心RE! 注意输出的时候编号是必须要拍好序再输出. 还有…
简介: 割边和割点的定义仅限于无向图中.我们可以通过定义以蛮力方式求解出无向图的所有割点和割边,但这样的求解方式效率低.Tarjan提出了一种快速求解的方式,通过一次DFS就求解出图中所有的割点和割边. 欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 割点与桥(割边)的定义 在无向图中才有割边和割点的定义 割点:无向连通图中,去掉一个顶点及和它相邻的所有边,图中的连通分量数增加,则该顶点称为割点. 桥(割边):无向联通图中,去…
无向图的割点与割边 定义:给定无相连通图\(G=(V,E)\) 若对于\(x \in V\),从图中删去节点\(x\)以及所有与\(x\)关联的边后,\(G\)分裂为两个或以上不连通的子图,则称\(x\)为\(G\)的割点. 若对于\(e \in E\),从图中删去边\(e\)之后,\(G\)分裂为两个不连通的子图,则称\(e\)为\(G\)的割边. 对于很多图上问题来说,这两个概念是很重要的.我们将探究如何求解无向图的割点与割边. 预备知识 时间戳 图在深度优先遍历的过程中,按照每一个节点第一…
这篇文章是从网络上总结各方经验 以及 自己找的一些例题的算法模板,主要是用于自己的日后的模板总结以后防失忆常看看的, 写的也是自己能看懂即可. tarjan算法的功能很强大, 可以用来求解强连通分量,缩点,桥,割点,LCA等,日后写到相应的模板题我就会放上来. 1.强连通分量(分量中是任意两点间都可以互相到达) 按照深度优先遍历的方式遍历这张图. 遍历当前节点所出的所有边.在遍历过程中: ( 1 ) 如果当前边的终点还没有访问过,访问. 回溯回来之后比较当前节点的low值和终点的low值.将较小…
Tarjan算法是一个基于dfs的搜索算法, 可以在O(N+M)的复杂度内求出图的割点.割边和强联通分量等信息. https://www.cnblogs.com/shadowland/p/5872257.html该算法的手动模拟详细 再Tarjan算法中,有如下定义. DFN[ i ] : 在DFS中该节点的时间戳 LOW[ i ] : 为i能追溯到最早的时间戳 在一个无向图中,如果有一个顶点,删除这个顶点以及这个顶点相关联的边以后,图的连通分量增多,就称这个点为割点. 割点伪代码: tarja…
目录 Tarjan算法与无向图的连通性 1:基础概念 2:Tarjan判断割点 3:Tarjan判断割边 Tarjan算法与无向图的连通性 1:基础概念 在说Tarjan算法求解无向图的连通性之前,先来说几个概念: <1. 时间戳:在图的深度优先遍历中,按照每一个结点第一次被访问到的时间顺序,依次给予N个结点1~N的整数边集,该标记就被计位"时间戳",计做 \(dfn[x]\). <2. 搜索树:任选一个结点深度优先遍历,每个点只访问一次.产生递归的边构成的树为搜索树. &…
1. 割点与连通度 在无向连通图中,删除一个顶点v及其相连的边后,原图从一个连通分量变成了两个或多个连通分量,则称顶点v为割点,同时也称关节点(Articulation Point).一个没有关节点的连通图称为重连通图(biconnected graph).若在连通图上至少删去k 个顶点才能破坏图的连通性,则称此图的连通度为k. 关节点和重连通图在实际中较多应用.显然,一个表示通信网络的图的连通度越高,其系统越可靠,无论是哪一个站点出现故障或遭到外界破坏,都不影响系统的正常工作:又如,一个航空网…