「Log」2023.8.23 小记】的更多相关文章

这次聊聊「日志」. 「日志」主要指系统或者软件留下的「记录」.出自表示「航海日志」的「logbook」. 经常听说「出现问题的时候,或者程序没有安装自己预期的来运行的时候,请看看日志!」. 确实,记录了系统和软件详细运行情况的「日志」是信息的宝库,通过日志来解决问题的事例也非常多. 但事实上,「无论如何也不会看日志」的用户也有很多.理由很简单,日志的信息量非常大,全部用眼睛来看的话是非常吃力的. 而且,英语写的日志也会让英文不好的人敬而远之. 虽说「要养成用眼睛来看日志的习惯」,但实行起来却非常…
题意 LOJ #2359. 「NOIP2016」天天爱跑步 题解 考虑把一个玩家的路径 \((x, y)\) 拆成两条,一条是 \(x\) 到 \(lca\) ( \(x, y\) 最近公共祖先) 的路径,另一条是 \(lca\) 到 \(y\) 的路径.(对于 \(x, y\) 是 \(lca\) 的情况需要特殊考虑一下就行了) 这个求 \(lca\) 的过程用倍增实现就行了. 假设令到达时间为 \(at\) . 不难发现,在树上向上的路径满足 \(dep_u + at_u=d_1\) (深度…
「NOI2018」冒泡排序 题目描述 最近,小S 对冒泡排序产生了浓厚的兴趣.为了问题简单,小 S 只研究对 1 到n 的排列的冒泡排序. 下面是对冒泡排序的算法描述. 输入:一个长度为n 的排列p[1...n] 输出:p 排序后的结果. for i = 1 to n do for j = 1 to n - 1 do if(p[j] > p[j + 1]) 交换p[j] 与p[j + 1] 的值 冒泡排序的交换次数被定义为交换过程的执行次数.可以证明交换次数的一个下 界是$\frac{1}{2}…
本文字数:3840 字 阅读本文大概需要:10 分钟 写在之前 在我们的现实生活中,「日志记录」其实是一件非常重要的事情,比如银行的转账记录,汽车的行车记录仪记录行驶过程中的一切,如果出现了什么问题,我们可以通过「日志记录」来搞清楚到底发生了什么事情. 除了在生活中,在日常的系统开发以及调试等过程中,记录日志同样是一件很重要的事情.很多编程初学者并没有「记录日志」的习惯,认为记录日志是一件可有可无的事情,出现问题的时候只要使用 print 函数打印一下程序的中间结果即可,真是 too young…
「CQOI2015」选数 题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. 输入输出格式 输入格式: 输入一行,包含4个空格分开的正整数,…
题面 洛谷P6788 「EZEC-3」四月樱花 给定 \(n,p\),求: \[ans=\left(\prod_{x=1}^n\prod_{y|x}\frac{y^{d(y)}}{\prod_{z|y}(z+1)^2}\right)\bmod p \] 数据范围:\(1\le n\le 2.5\cdot 10^9\),\(9.9\cdot 10^8<p<1.1\cdot 10^9\). 蒟蒻语 一道题撑起一场月赛,良心又劲爆. 膜拜出题人 @SOSCHINA,@muxii. 蒟蒻解 开局一波猛…
  进阶篇戳这里. 目录 何为「多项式」 基本概念 系数表示法 & 点值表示法 傅里叶(Fourier)变换 概述 前置知识 - 复数 单位根 快速傅里叶正变换(FFT) 快速傅里叶逆变换(IFFT) 迭代实现 例题 「洛谷 P3803」「模板」多项式乘法(FFT) 题意简述 数据规模 快速数论变换(NTT) 原根 实现 NTT 模数 奇怪的模数 - 任意模数 NTT 三模 NTT 拆系数 FFT(MTT) 七次转五次 五次转四次 例题 「洛谷 P4245」「模板」任意模数 NTT 题意简述 数…
工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPerson(name, age, job) { var o = new Object(); o.name = name; o.age = age; o.job = job; o.sayName = function() { alert(this.age); }; return o; } var perso…
超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSONP. 现在你想要获取其他网站上的 JavaScript 脚本,你非常高兴的使用 XMLHttpRequest 对象来获取.但是浏览器一点儿也不配合你,无情的弹出了下面的错误信息: XMLHttpRequest cannot load http://x.com/main.dat. No 'Access…
原文出處  http://www.dotblogs.com.tw/mis2000lab/archive/2013/08/19/multiple_fileupload_asp_net_20130819.aspx FileUpload控件「批次上传 / 多档案同时上传」的范例--以「流水号」产生「变量名称」 之前的两个范例: [C# / ASP.NET]FileUpload控件「批次上传 / 多档案同时上传」的范例(C#语法) [VB / ASP.NET]FileUpload控件「批次上传 / 多档…