分类算法之贝叶斯(Bayes)分类器】的更多相关文章

摘要:旁听了清华大学王建勇老师的 数据挖掘:理论与算法 的课,讲的还是挺细的,好记性不如烂笔头,在此记录自己的学习内容,方便以后复习.   一:贝叶斯分类器简介 1)贝叶斯分类器是一种基于统计的分类器,它根据给定样本属于某一个具体类的概率来对其进行分类. 2)贝叶斯分类器的理论基础是贝叶斯理论. 3)贝叶斯分类器的一种简单形式是朴素贝叶斯分类器,跟随机森林.神经网络等分类器都有可比的性能. 4)贝叶斯分类器是一种增量型的分类器.   二:贝叶斯理论 第一次接触贝叶斯还是本科学概率论的时候,那时候…
https://www.cnblogs.com/leoo2sk/archive/2010/09/18/bayes-network.html 2.1.摘要 在上一篇文章中我们讨论了朴素贝叶斯分类.朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立).当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的能力.这一篇文章中,我们接着上一篇文章的例…
一.概率基础 概率定义:概率定义为一件事情发生的可能性,例如,随机抛硬币,正面朝上的概率. 联合概率:包含多个条件,且所有条件同时成立的概率,记作:…
朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM).        和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率.同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单.        理论上,N…
朴素贝叶斯主要用于文本分类.文本分类常见三大算法:KNN.朴素贝叶斯.支持向量机SVM. 一.贝叶斯定理 贝叶斯公式思想:利用已知值来估计未知概率.已知某条件概率,如何得到两个事件交换后的概率,也就是已知P(A|B)的情况下如何求得P(B|A). 条件概率:P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率.基本求解公式: 现实中通常遇到这种情况:可以很容易直接得出P(A|B),而P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯公式就是干这个用…
朴素贝叶斯: 是使用概率论来分类的算法.其中朴素:各特征条件独立:贝叶斯:根据贝叶斯定理.这里,只要分别估计出,特征 Χi 在每一类的条件概率就可以了.类别 y 的先验概率可以通过训练集算出 k-近邻算法: 简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类. 决策树:最优划分属性,结点的“纯度”越来越高. 即如何选择最优划分属性,一般而言,随着划分过程不断进行,我们希望决策树的分支节点所包含的样本尽可能属于同一类别,即结点的“纯度”越来越高. 支持向量机(SVM)是支持(或支撑)平…
一.什么是朴素贝叶斯? (1)思想:朴素贝叶斯假设    条件独立性假设:假设在给定label y的条件下,特征之间是独立的    最简单的概率图模型 解释: (2)重点注意:朴素贝叶斯 拉普拉斯平滑(Laplace Smoothing) 为什么要做平滑处理?   零概率问题,就是在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0.在文本分类的问题中,当一个词语没有在训练样本中出现,该词语调概率为0,使用连乘计算文本出现概率时也为0.这是不合理的,…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.贝叶斯网络与朴素贝叶斯的区别 朴素贝叶斯的假设前提有两个第一个为:各特征彼此独立:第二个为且对被解释变量的影响一致,不能进行变量筛选.但是很多情况这一假设是无法做到的,比如解决文本分类时,相邻词的关系.近义词的关系等等.彼此不独立的特征之间的关系没法通过朴素贝叶斯分类器训练得到,同时这种不独立性也给问题的解决方案引入了更多的复杂性[1].…
http://blog.csdn.net/pipisorry/article/details/52489270 为什么用贝叶斯网络 联合分布的显式表示 Note: n个变量的联合分布,每个x对应两个值,共n个x,且所有概率总和为1,则联合分布需要2^n-1个参数. 贝叶斯网表示 独立性质的应用会降低参数数目,表达更紧凑. [PGM:贝叶斯网表示之朴素贝叶斯模型naive Bayes:独立性质的利用] 皮皮blog 贝叶斯网络 贝叶斯网络(Bayesian network),又称信念网络(Beli…
Naive Bayes-朴素贝叶斯 Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率.贝叶斯法则表达式如下所示 P(A|B) – 在事件B下事件A发生的条件概率 P(B|A) – 在事件A下事件B发生的条件概率 P(A), P(B) – 独立事件A和独立事件B的边缘概率 顺便提一下,上式中的分母P(B)可以根据全概率公式分解为: Bayesian inferenc(贝叶斯推断) 贝叶斯定理的许多应用之一就是…