R语言中的箱图介绍 boxplot】的更多相关文章

画箱图的函数: boxplot()##help(boxplot)查询具体用法   图例的解释: 如下图,是两个简单的箱图. 中间的箱子的上下边,分别是第三,一个四分位数. 中间的黑线是第二四分位数(中位数). 设r是变量的四分位距,箱图上方的小横线是小于或等于第三个四分位数+1.5*r的最大观测值.同时下方的小横线是,大于等于第一个四分位数减去1.5*r的最大的观测值. 图中的小白圈,代表很大可能性上是离群点(outlier).(在其他图中也适用)       总结: 箱图给出了大量的信息,不仅…
详细内容见上一篇文章:http://www.cnblogs.com/lc1217/p/6514734.html 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题. 代码如下:(数据同上一篇博客)(是不是很简单????) > x<-c(6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2) > y<-c(5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3) > lsfit(x,y…
通常来说,我们可以从两个方面来提高一个预测模型的准确性:完善特征工程(feature engineering)或是直接使用Boosting算法.通过大量数据科学竞赛的试炼,我们可以发现人们更钟爱于Boosting算法,这是因为和其他方法相比,它在产生类似的结果时往往更加节约时间. Boosting算法有很多种,比如梯度推进(Gradient Boosting).XGBoost.AdaBoost.Gentle Boost等等.每一种算法都有自己不同的理论基础,通过对它们进行运用,算法之间细微的差别…
R语言中如何使用最小二乘法 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题.         代码如下: > x<-c(6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2) > y<-c(5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3) > lsfit(x,y)        结果如下: $coefficients Intercept         X 0.83105…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- openNLP是NLP中比较好的开源工具,R语言中有openNLP packages,但是呢,貌似对中文的支持并不好,笔者试了试,发现结果并不如意.但是也算认识了一番,就来介绍一下. 一些内容转载于白宁超老师:OpenNLP:驾驭文本,分词那些事 ---------------------------------------- 一.openNL…
R语言中的数据处理包dplyr.tidyr笔记   dplyr包是Hadley Wickham的新作,主要用于数据清洗和整理,该包专注dataframe数据格式,从而大幅提高了数据处理速度,并且提供了与其它数据库的接口:tidyr包的作者是Hadley Wickham, 该包用于“tidy”你的数据,这个包常跟dplyr结合使用. 本文将介绍dplyr包的下述五个函数用法: 筛选: filter() 排列: arrange() 选择: select() 变形: mutate() 汇总: summ…
准备 第一步就是安装R语言环境以及RStudio 图绘制准备 首先安装库文件,敲入指令,回车 install.packages('corrplot') 然后安装excel导入的插件,点击右上角import Dataset,选中From excel即可. 这些操作都很简单~~ 数据预处理 然后到了数据输入了,这么多数据,我们总不能一行输入吧?那得有多蠢 于是我们利用上了数据导入功能,当当当~~ 然而理想很丰满,现实却很蛋疼,导入的excel数据格式不是我们希望的矩阵格式ORZ! 哎,休息下喝杯茶,…
R语言中的字符处理 (2011-07-10 22:29:48) 转载▼ 标签: r语言 字符处理 字符串 连接 分割 分类: R R的字符串处理能力还是很强大的,具体有base包的几个函数和stringr包. 1.计算字符串的字符数 nchar()  2. 字符串连接 paste(..., sep = " ", collapse = NULL),其中collpase参数可将多个字符串连接成一个. ===================================== > pa…
R语言中样本平衡的几种方法 在对不平衡的分类数据集进行建模时,机器学习算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性.在不平衡的数据中,任一算法都没法从样本量少的类中获取足够的信息来进行精确预测.因此,机器学习算法常常被要求应用在平衡数据集上.不平衡分类是一种有监督学习,但它处理的对象中有一个类所占的比例远远大于其余类.比起多分类,这一问题在二分类中更为常见.不平衡一词指代数据中响应变量(被解释变量)的分布不均衡,如果一个数据集的响应变量在不同类上的分布差别较大我们…
说明 在前一篇中,我们介绍了 R 语言和 R Studio 的安装,并简单的介绍了一个示例,接下来让我们由浅入深的学习 R 语言的相关知识. 本篇将主要介绍 R 语言的基本操作.变量和几种基本数据类型,好对 R 语言的使用方法有一个基本的概念.通过本篇的学习,你将了解到: R 语言有哪些基本操作 什么是变量,以及如何给变量赋值 R 语言有哪些基本数据类型,如何确定变量的数据类型 R 语言的基本操作 R 语言的默认提示符是 > ,它表示正在等待输入命令,每次输入命令后敲击回车即可执行当前命令. R…