AVL平衡树的插入例程】的更多相关文章

/* **AVL平衡树插入例程 **2014-5-30 11:44:50 */ avlTree insert(elementType X, avlTree T){ if(T == NULL){ T = malloc(sizeof(struct avlTree)); if(T == NULL) fatalError("Out of space!!!"); T->element = X; T->height = 0; T->left = T->right = NUL…
实现Avl平衡树   一.介绍 AVL树是一种自平衡的二叉搜索树,它由Adelson-Velskii和 Landis于1962年发表在论文<An algorithm for the organization of information>中.AVL树的特点是,其左右子树的高度差的绝对值小于2(空树的高度定义为 -1,无子树的树高度为0).如下图所示,左边的二叉树为AVL树,而右边的二叉树root节点的左子树高度为2,右子树高度为0,高度差为2,不是AVL树.与普通二叉树相同的是查找和遍历:但是…
AVL 平衡树和树旋转 目录 AVL平衡二叉树 树旋转 代码实现 1 AVL平衡二叉树 AVL(Adelson-Velskii & Landis)树是一种带有平衡条件的二叉树,一棵AVL树其实是一棵左子树和右子树高度最多差1的二叉查找树.一棵树的不平衡主要是由于插入和删除的过程中产生的,此时则需要使用旋转来对AVL树进行平衡. AVL Tree: 0 _____|_____ | | 0 0 |___ ___|___ | | | 0 0 0 |__ | 0 插入引起不平衡主要有以下四种情况: In…
环境:C++ 11 + win10 IDE:Clion 2018.3 AVL平衡树是在BST二叉查找树的基础上添加了平衡机制. 我们把平衡的BST认为是任一节点的左子树和右子树的高度差为-1,0,1中的一种情况,即不存在相差两层及以上. 所谓平衡机制就是BST在理想情况下搜索复杂度是o(logn) 但是如果在(存在某一节点,该节点的左子树的高度与右子树的高度差>1)这种状况下,复杂度会超过o(logn) 举个极端的例子如加入1,2,3,4,BST就退化为一个线性的链表,复杂度变成了o(n) 为了…
一.AVL 树 在计算机科学中,AVL树是最早被发明的自平衡二叉查找树.在AVL树中,任一节点对应的两棵子树的最大高度差为 1,因此它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下的时间复杂度都是 O(log(n)).插入和删除元素的操作则可能需要借由一次或多次树旋转,以实现树的重新平衡. 节点的平衡因子是它的左子树的高度减去它的右子树的高度(有时相反).带有平衡因子 1.0 或 -1 的节点被认为是平衡的.带有平衡因子 -2 或 2 的节点被认为是不平衡的,并需要重新平衡这个树.平衡因…
=================================================================== AVL树的概念       在说AVL树的概念之前,我们需要清楚二茬搜索树的概念.对于二叉搜索树,我们知道它可以降低查找速率,但是如果一个二叉搜索树退化成一棵只剩单支的搜索树,此时的查找速率就相当于顺序表中查找元素,效率变低,时间复杂度由原来的O(logN)变为O(N).         此时就有了AVL(高度平衡二叉搜索树),从它的名字就能知道它也是一棵二叉搜…
参考链接: http://blog.csdn.net/gabriel1026/article/details/6311339   1126号注:先前有一个概念搞混了: 节点的深度 Depth 是指从根节点到当前节点的长度: 节点的高度 Height 是指从当前节点向下,到子孙中所有叶子节点的长度的最大值.     之前简单了解过 AVL 树,知道概念但一直没动手实践过.Now    AVL 树是二叉搜索树的一种.二叉搜索树的规则就是:每个节点的 left child 都比自己小,right ch…
/* AVL树的节点声明 */ #ifndef _AVLTREE_H #define _AVLTREE_H struct AvlNode; typedef struct AvlNode *Position; typedef struct AvlNode *AvlTree; AvlTree MakeEmpty(AvlTree T); Position Find(ElementType X, AvlTree T); Position FindMin(AvlTree T); Position Find…
AVL是一种平衡二叉树,它通过对二叉搜索树中的节点进行旋转使得二叉搜索树达到平衡.AVL在所有的平衡二叉搜索树中具有最高的平衡性. 定义 平衡二叉树或者为空树或者为满足如下性质的二叉搜索树: 左右子树的高度之差绝对值不超过1 左右子树仍然为平衡二叉树 定义平衡因子 BF(x) = x的左子树高度 - x的右子树的高度.平衡二叉树的每个节点的平衡因子只能为-1, 0, 1. 维持平衡思想 若二叉树当前为平衡状态,此时插入/删除一个新的节点,此时有可能造成二叉树不满足平衡条件,此时需要通过对节点进行…
至于什么是AVL树和AVL树的一些概念问题在这里就不多说了,下面是我写的代码,里面的注释非常详细地说明了实现的思想和方法. 因为在操作时真正需要的是子树高度的差,所以这里采用-1,0,1来表示左子树和右子树的高度差,而没有使用记录树的高度的方法. 代码如下: typedef struct AVLNode {     DataType cData;     int nBf;        //结点的平衡因子,-1表示右子树的深度比左子树高1                     //0表示左子树…