POJ 1840 Eqs】的更多相关文章

题目:http://poj.org/problem?id=1840 题解:http://blog.csdn.net/lyy289065406/article/details/6647387 小优姐讲的很好了 #include<cstdio> #include<string> #include<iostream> #include<cstring> #include<map> using namespace std; ]; int main() {…
题目 http://poj.org/problem?id=1840 题意 给 与数组a[5],其中-50<=a[i]<=50,0<=i<5,求有多少组不同的x[5],使得a[0] * pow(x[0], 3) + a[1] * pow(x[1], 3) + a[2] * pow(x[2], 3) + a[3] * pow(x[3], 3) + a[4] * pow(x[4], 3)==0 其中x[i]满足-50<=x[i]<=50,0<=i<5 思路 该等式…
Eqs Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 15010   Accepted: 7366 Description Consider equations having the following form:  a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0  The coefficients are given integers from the interval [-50,50].  I…
Eqs Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 13955   Accepted: 6851 Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The coefficients are given integers from the interval [-50,50]. It i…
题意  输入a1,a2,a3,a4,a5  求有多少种不同的x1,x2,x3,x4,x5序列使得等式成立   a,x取值在-50到50之间 直接暴力的话肯定会超时的   100的五次方  10e了都    然后能够考虑将等式变一下形   把a1*x1^3+a2*x2^3移到右边   也就是-(a1*x1^3+a2^x2^3)=a3*x3^3+a4*x4^3+a5*x5^3 考虑到a1*x1^3+a2^x2^3的最大值50*50^3+50*50^3=12500000  这个数并不大  能够开这么大…
Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The coefficients are given integers from the interval [-50,50]. It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,…
  Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The coefficients are given integers from the interval [-50,50]. It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-5…
思路:这题好像以前有类似的讲过,我们把等式移一下,变成 -(a1*x1^3 + a2*x2^3)== a3*x3^3 + a4*x4^3 + a5*x5^3,那么我们只要先预处理求出左边的答案,然后再找右边是否也能得到就行了,暴力的复杂度从O(n^5)降为O(n^3 + n^2).因为左式范围-12500000~12500000,所以至少开12500000 * 2的空间,用int会爆,这里用short.如果小于0要加25000000,这样不会有重复的答案,算是简单的hash? 代码: #incl…
Eqs Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14169   Accepted: 6972 Description Consider equations having the following form:  a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0  The coefficients are given integers from the interval [-50,50].  I…
题意:对于方程:a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 ,有xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}. 现在给出a1,a2,a3,a4,a5的值,求出满足上面方程的解有多少个. 思路:hash的应用.暴力枚举的话会达到100^5,明显会超时.所以将方程分成-(a1x13+ a2x23 )和 a3x33+a4x43+ a5x53 两部分,若这两部分相等,则为方程的一个解. #include<stdio.h> #include&…
Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53= The coefficients are given integers ,]. It ,], xi != , any i∈{,,,,}. Determine how many solutions satisfy the given equation. Input The only line of input co…
题目链接:http://poj.org/problem?id=1840 题意:公式a1x1^3+ a2x2^3+ a3x3^3+ a4x4^3+ a5x5^3=0,现在给定a1~a5,求有多少个(x1~x5)的组合使得公式成立.并且(x1~x5)取值再[-50,50]且不能为0 思路:因为x的值范围比较小,只有100.所以可以先求出 a1x1^3+a2x2^3+a3x3^3. 然后在求 (-1)*(a4x4^3+a5x5^3)从前面的所得的Hash表进行二分查找. #include<iostre…
a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0,xi∈[-50,50],且xi!=0.让我们求所有解的可能. 首先,如果暴力判断的话,每个x的取值有100种可能,100^5肯定会超时. 我们可以枚举x1,x2的值,并且记录下来.再枚举x3,x4,x5的值.如果发现有互为相反数的,说明有一个解存在.复杂度却大大降低了. 当然,我们可以只处理正数的情况.如果存在一组解,x1,x2,x3,x4,x5,那么容易证明-x1,-x2,-x3,-x4,-x5也是一组解. 我们只记录a1…
题目链接:http://poj.org/problem?id=1804 题意:给定一个序列a[],每次只允许交换相邻两个数,最少要交换多少次才能把它变成非递降序列. 思路:题目就是要求逆序对数,我们知道,求逆序对最典型的方法就是树状数组,但是还有一种方法就是Merge_sort(),即归并排序.实际上归并排序的交换次数就是这个数组的逆序对个数,归并排序是将数列a[l,h]分成两半a[l,mid]和a[mid+1,h]分别进行归并排序,然后再将这两半合并起来.在合并的过程中(设l<=i<=mid…
Eqs Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 13967   Accepted: 6858 Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The coefficients are given integers from the interval [-50,50]. It i…
Eqs Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14093   Accepted: 6927 Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The coefficients are given integers from the interval [-50,50]. It i…
Description Consider equations having the following form: a1x1 3+ a2x2 3+ a3x3 3+ a4x4 3+ a5x5 3=0 The coefficients are given integers from the interval [-50,50]. It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈…
Description Consider equations having the following form: a1x1 3+ a2x2 3+ a3x3 3+ a4x4 3+ a5x5 3=0 The coefficients are given integers from the interval [-50,50]. It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈…
OJ上的一些水题(可用来练手和增加自信) (POJ 3299,POJ 2159,POJ 2739,POJ 1083,POJ 2262,POJ 1503,POJ 3006,POJ 2255,POJ 3094) 初期: 一.基本算法: 枚举. (POJ 1753,POJ 2965) 贪心(POJ 1328,POJ 2109,POJ 2586) 递归和分治法. 递推. 构造法.(POJ 3295) 模拟法.(POJ 1068,POJ 2632,POJ 1573,POJ 2993,POJ 2996) 二…
著名题单,最初来源不详.直接来源:http://blog.csdn.net/a1dark/article/details/11714009 OJ上的一些水题(可用来练手和增加自信) (POJ 3299,POJ 2159,POJ 2739,POJ 1083,POJ 2262,POJ 1503,POJ 3006,POJ 2255,POJ 3094) 初期: 一.基本算法: 枚举. (POJ 1753,POJ 2965) 贪心(POJ 1328,POJ 2109,POJ 2586) 递归和分治法. 递…
说在前面: 题是乱七八糟的. 几个二分的题. (但是我的做法不一定是二分,有些裸暴力. 1. Equations HDU - 1496 输入a,b,c,d问你这个方程有多少解.a*x1^2+b*x2^2+c*x3^2+d*x4^2=0a,b,c,d属于[-50, 50] x1,x2,x3,x4属于[-100,100]且Xi不等于零 解法很简单, 把式子拆两边,拆成a*x1^2 + b*x2^2 = -(c*x3^2 + d*x4^2)的形式,然后暴力枚举就行了. // 注意 如果只枚举正数开始枚…
Eqs Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 18299   Accepted: 8933 Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The coefficients are given integers from the interval [-50,50]. It i…
(今天兴致大发学了Markdown,第一篇博客) 这次的主要都是hash的题目(当然这就意味这可以用map) hash的方式也有很多: 普通hash hash挂链 双hash以及自然溢出等 当然我还是喜欢挂链的(主要是精准) 下面开始看题目 3349 题意很简单,给出一片雪花的信息(六个角) 如果两片雪花相同则它们从某一点开始顺时针或逆时针数字相同 这...... 直接hash跑一边即可 主意挂链,要不然很容易WA CODE #include<cstdio> #include<cstri…
Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. (4)递推. (5)构造法.(poj3295) (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996) 二.图算法: (1)图的深度优先遍历和广度优先遍历. (2)最短路…
初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推.     (5)构造法.(poj3295)     (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:     (1)图的深度优先遍历和广度优先遍历.     (2)最短路径算法(dijkstra,bellman-ford,floyd,hea…
初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      (4)递推.      (5)构造法.(poj3295)      (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996) 二.图算法:      (1)图的深度优先遍历和广度优先遍历.      (2)最短路径算法(dijkstra,bellman-ford…
poj 题目分类 按照ac的代码长度分类(主要参考最短代码和自己写的代码) 短代码:0.01K--0.50K:中短代码:0.51K--1.00K:中等代码量:1.01K--2.00K:长代码:2.01K以上. 短:1147.1163.1922.2211.2215.2229.2232.2234.2242.2245.2262.2301.2309.2313.2334.2346.2348.2350.2352.2381.2405.2406: 中短:1014.1281.1618.1928.1961.2054…
本文来自:http://www.cppblog.com/snowshine09/archive/2011/08/02/152272.spx 多版本的POJ分类 流传最广的一种分类: 初期: 一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. (4)递推. (5)构造法.(poj3295) (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996) 二.图算法:…
初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推.     (5)构造法.(poj3295)     (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:     (1)图的深度优先遍历和广度优先遍历.     (2)最短路径算法(dijkstra,bellman-ford,floyd,hea…
题目连接 http://poj.org/problem?id=1840 Battle City Description Many of us had played the game "Battle city" in our childhood, and some people (like me) even often play it on computer now. What we are discussing is a simple edition of this game. Giv…