pytorch中的nn.CrossEntropyLoss()】的更多相关文章

nn.CrossEntropyLoss()这个损失函数和我们普通说的交叉熵还是有些区别 x是模型生成的结果,class是对应的label 具体代码可参见如下 import torch import torch.nn as nn # 表示模型的输出output(B,C)格式,B是batch,C是类别 output = torch.randn(2, 3, requires_grad = True) #batch_size设置为2,3分类 # 表示数据的标签label(B)格式,B是batch,其中的…
作者:infiniteft链接:https://www.zhihu.com/question/66782101/answer/579393790来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 两者的相同之处: nn.Xxx和nn.functional.xxx的实际功能是相同的,即nn.Conv2d和nn.functional.conv2d 都是进行卷积,nn.Dropout 和nn.functional.dropout都是进行dropout,.....: 运行效率…
主要是参考这里,写的很好PyTorch 入门实战(四)--利用Torch.nn构建卷积神经网络 卷积层nn.Con2d() 常用参数 in_channels:输入通道数 out_channels:输出通道数 kernel_size:滤波器(卷积核)大小,宽和高相等的卷积核可以用一个数字表示,例如kernel_size=3;否则用不同数字表示,例如kernel_size=(5,3) stride : 表示滤波器滑动的步长 padding:是否进行零填充,padding=0表示四周不进行零填充,pa…
分类问题中,交叉熵函数是比较常用也是比较基础的损失函数,原来就是了解,但一直搞不懂他是怎么来的?为什么交叉熵能够表征真实样本标签和预测概率之间的差值?趁着这次学习把这些概念系统学习了一下. 首先说起交叉熵,脑子里就会出现这个东西: 随后我们脑子里可能还会出现Sigmoid()这个函数: pytorch中的CrossEntropyLoss()函数实际就是先把输出结果进行sigmoid,随后再放到传统的交叉熵函数中,就会得到结果. 那我们就先从sigmoid开始说起,我们知道sigmoid的作用其实…
0 - inplace 在pytorch中,nn.ReLU(inplace=True)和nn.LeakyReLU(inplace=True)中存在inplace字段.该参数的inplace=True的意思是进行原地操作,例如: x=x+5是对x的原地操作 y=x+5,x=y不是对x的原地操作 所以,如果指定inplace=True,则对于上层网络传递下来的tensor直接进行修改,可以少存储变量y,节省运算内存. inplace=True means that it will modify th…
先介绍一下 Caffe 和 TensorFlow 中 weight decay 的设置: 在 Caffe 中, SolverParameter.weight_decay 可以作用于所有的可训练参数, 不妨称为 global weight decay, 另外还可以为各层中的每个可训练参数设置独立的 decay_mult, global weight decay 和当前可训练参数的 decay_mult 共同决定了当前可训练参数的 weight decay. 在 TensorFlow 中, 某些接口…
学习pytorch路程之动手学深度学习-3.4-3.7 置信度.置信区间参考:https://cloud.tencent.com/developer/news/452418 本人感觉还是挺好理解的 交叉熵参考博客:https://www.cnblogs.com/kyrieng/p/8694705.html   https://blog.csdn.net/tsyccnh/article/details/79163834  个人感觉还不错,好理解 (这段瞅瞅就行了)torchvision包,服务于P…
torch.nn 是专门为神经网络设计的模块化接口,nn构建于autgrad之上,可以用来定义和运行神经网络 nn.Module 是nn中重要的类,包含网络各层的定义,以及forward方法 对于自己定义的网络,需要注意以下几点: 1)需要继承nn.Module类,并实现forward方法,只要在nn.Module的子类中定义forward方法,backward函数就会被自动实现(利用autograd机制) 2)一般把网络中可学习参数的层放在构造函数中__init__(),没有可学习参数的层如R…
[转载]Pytorch中nn.Linear module的理解 本文转载并援引全文纯粹是为了构建和分类自己的知识,方便自己未来的查找,没啥其他意思. 这个模块要实现的公式是:y=xAT+*b 来源:https://blog.csdn.net/u012936765/article/details/52671156 Linear 是module的子类,是参数化module的一种,与其名称一样,表示着一种线性变换. 创建 parent 的init函数 Linear的创建需要两个参数,inputSize…
Pytorch中nn.Dropout2d的作用 首先,关于Dropout方法,这篇博文有详细的介绍.简单来说, 我们在前向传播的时候,让某个神经元的激活值以一定的概率p停止工作,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征 dropout方法有很多类型,图像处理中最常用的是Dropout2d,我从网上找了很多的中文资料,都没有让人满意的介绍,意外发现源代码dropout.py中的介绍还挺好的: Randomly zero out entire channels:A channel i…
Pytorch中nn.Conv2d的用法 nn.Conv2d是二维卷积方法,相对应的还有一维卷积方法nn.Conv1d,常用于文本数据的处理,而nn.Conv2d一般用于二维图像. 先看一下接口定义: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 参数解释: stride:步长 zero-padding:图像四周…
一.BCELoss 二分类损失函数 输入维度为(n, ), 输出维度为(n, ) 如果说要预测二分类值为1的概率,则建议用该函数! 输入比如是3维,则每一个应该是在0--1区间内(随意通常配合sigmoid函数使用),举例如下: import torchimport torch.nn as nnm = nn.Sigmoid() loss = nn.BCELoss() input = torch.randn(3,requires_grad=True) target = torch.empty(3)…
class torch.nn.CrossEntropyLoss(weight=None, size_average=True, ignore_index=-100, reduce=True) 我这里没有详细解读这个损失函数的各个参数,仅记录一下在sru中涉及到的. sru中代码如下 criterion = nn.CrossEntropyLoss(size_average=False) 根据pytorch的官方文档 我得出的理解跟以上图片是一致的,图片来源:http://blog.csdn.net…
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/weixin_42279044/article/details/101053719 关于数据格式 默认日常描述图片尺寸,采用[w,h]的形式,比如一张图片是1280*800就是指宽w=1280, 高h=800. 因此在cfg中所指定img scale = [1333, 800]就是指w=1333, h=800 从而转入计算机后,要从w,h变成…
参考:https://pytorch.org/docs/master/optim.html#how-to-adjust-learning-rate torch.optim.lr_scheduler提供了几种方法来根据迭代的数量来调整学习率 自己手动定义一个学习率衰减函数: def adjust_learning_rate(optimizer, epoch, lr): """Sets the learning rate to the initial LR decayed by…
这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚. 给出实例 def train(train_loader, model, criteon, optimizer, epoch): train_loss = 0 train_acc = 0 num_correct= 0 for step, (x,y) in enumerate(train_loader): # x: [b, 3, 224, 224], y: [b] x, y = x.to(device), y.to(de…
PyTorch中文文档 PyTorch是使用GPU和CPU优化的深度学习张量库. 说明 自动求导机制 CUDA语义 扩展PyTorch 多进程最佳实践 序列化语义 Package参考 torch torch.Tensor torch.Storage torch.nn torch.nn.functional torch.nn.init torch.optim torch.autograd torch.multiprocessing torch.legacy torch.cuda torch.uti…
在代码中改好存储Log的路径 命令行中输入 tensorboard --logdir /home/huihua/NewDisk1/PycharmProjects/pytorch-deeplab-xception-master/run 会出来一个网站,复制到浏览器即可可视化loss,acc,lr等数据的变化过程. 举例说明pytorch中设置summary的方式: import argparse import os import numpy as np from tqdm import tqdm…
Faster-RCNN论文中在RoI-Head网络中,将128个RoI区域对应的feature map进行截取,而后利用RoI pooling层输出7*7大小的feature map.在pytorch中可以利用: torch.nn.functional.adaptive_max_pool2d(input, output_size, return_indices=False) torch.nn.AdaptiveMaxPool2d(output_size, return_indices=False)…
转载请注明处处: http://www.cnblogs.com/darkknightzh/p/9017854.html 参考网址: https://pytorch.org/docs/stable/nn.html?highlight=conv2d#torch.nn.Conv2d https://www.cnblogs.com/chuantingSDU/p/8120065.html https://blog.csdn.net/chaolei3/article/details/79374563 1x1…
Pytorch中的split问题: 1.使用torch.nn.Conv2d中有个参数是groups会将输入的feature map分组,此处需要注意的一点是分组之后各组的feature map的channel数目是相同的. 2.另外一种方式用torch.split函数将输入的feature map先split,之后再卷积出不同输出channels数目不同的feature maps.…
文章来源:https://www.jianshu.com/p/01577e86e506 pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True) class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_si…
不涉及具体代码,只是记录一下自己的疑惑. 我们知道对于在pytorch中,我们通过构建一个词向量矩阵对象.这个时候对象矩阵是随机初始化的,然后我们的输入是单词的数值表达,也就是一些索引.那么我们会根据索引,赋予每个单词独一无二的一个词向量表达.在其后的神经网络训练过程中,每个单词对应独一无二的索引,从而对应自己的词向量,词向量会随着迭代进行更新. 上面讲的这个是使用pytorch词向量的随机初始化的流程. 但是我们如果使用预训练的词向量怎么办呢?很多例子中,直接就给个代码是类似这样的: self…
转载于:Pytorch中的仿射变换(affine_grid) 参考:详细解读Spatial Transformer Networks (STN) 假设我们有这么一张图片:   下面我们将通过分别通过手动编码和pytorch方式对该图片进行平移.旋转.转置.缩放等操作,这些操作的数学原理在本文中不会详细讲解. 实现载入图片(注意,下面的代码都是在 jupyter 中进行): from torchvision import transforms from PIL import Image impor…
pytorch中调用C进行扩展,使得某些功能在CPU上运行更快: 第一步:编写头文件 /* src/my_lib.h */ int my_lib_add_forward(THFloatTensor *input1, THFloatTensor *input2, THFloatTensor *output); int my_lib_add_backward(THFloatTensor *grad_output, THFloatTensor *grad_input); 第二步:编写源文件 /* sr…
转载:https://zhuanlan.zhihu.com/p/53927068 https://blog.csdn.net/wangdongwei0/article/details/88956527 pytorch最后的权重文件是.pth格式的. 经常遇到的问题: 进行finutune时,改配置文件中的学习率,发现程序跑起来后竟然保持了以前的学习率, 并没有使用新的学习率. 原因: 首先查看.pth文件中的内容,我们发现它其实是一个字典格式的文件: 其中保存了optimizer和schedul…
介绍 深度学习现在是一个非常猖獗的领域 - 有如此多的应用程序日复一日地出现.深入了解深度学习的最佳方法是亲自动手.尽可能多地参与项目,并尝试自己完成.这将帮助您更深入地掌握主题,并帮助您成为更好的深度学习实践者. 在本文中,我们将看一个有趣的多模态主题,我们将结合图像和文本处理来构建一个有用的深度学习应用程序,即图像字幕.图像字幕是指从图像生成文本描述的过程 - 基于图像中的对象和动作.例如: 这个过程在现实生活中有很多潜在的应用.值得注意的是保存图像的标题,以便仅在此描述的基础上可以在稍后阶…
      初学神经网络和pytorch,这里参考大佬资料来总结一下有哪些激活函数和损失函数(pytorch表示)      首先pytorch初始化:   import torch import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt x = torch.linspace(-5, 5, 200) # 构造一段连续的数据 x = Variable(x)…
PyTorch中的梯度累加 使用PyTorch实现梯度累加变相扩大batch PyTorch中在反向传播前为什么要手动将梯度清零? - Pascal的回答 - 知乎 https://www.zhihu.com/question/303070254/answer/573037166 这种模式可以让梯度玩出更多花样,比如说梯度累加(gradient accumulation) 传统的训练函数,一个batch是这么训练的: for i,(images,target) in enumerate(trai…
今天要聊聊用 PyTorch 进行 C++ 扩展. 在正式开始前,我们需要了解 PyTorch 如何自定义module.这其中,最常见的就是在 python 中继承torch.nn.Module,用 PyTorch 中已有的 operator 来组装成自己的模块.这种方式实现简单,但是,计算效率却未必最佳,另外,如果我们想实现的功能过于复杂,可能 PyTorch 中那些已有的函数也没法满足我们的要求.这时,用 C.C++.CUDA 来扩展 PyTorch 的模块就是最佳的选择了. 由于目前市面上…