​前言 本文介绍了现有实例分割方法的一些缺陷,以及transformer用于实例分割的困难,提出了一个基于transformer的高质量实例分割模型SOTR. 经实验表明,SOTR不仅为实例分割提供了一个新的框架,还在MS Coco数据集上超过了SOTA实例分割方法. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文:SOTR: Segmenting Objects with Transformers 代码:h…
1 语义分割 语义分割是对图像中每个像素作分类,不区分物体,只关心像素.如下: (1)完全的卷积网络架构 处理语义分割问题可以使用下面的模型: 其中我们经过多个卷积层处理,最终输出体的维度是C*H*W,C表示类别个数,表示每个像素在不同类别上的得分.最终取最大得分为预测类别. 训练这样一个模型,我们需要对每个像素都分好类的训练集(通常比较昂贵).然后前向传播出一张图的得分体(C*H*W),与训练集的标签体求交叉熵,得到损失函数,然后反向传播学习参数. 然而,这样一个模型的中间层完全保留了图像的大…
​  前言  本文解读的论文是ICCV2021中的最佳论文,在短短几个月内,google scholar上有388引用次数,github上有6.1k star. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows 代码:https://github. com/micro…
​  前言  ViT通过简单地将图像分割成固定长度的tokens,并使用transformer来学习这些tokens之间的关系.tokens化可能会破坏对象结构,将网格分配给背景等不感兴趣的区域,并引入干扰信号. 为了缓解上述问题,本文提出了一种迭代渐进采样策略来定位区分区域.在每次迭代中,当前采样步骤的嵌入被馈送到transformer编码层,并预测一组采样偏移量以更新下一步的采样位置.渐进抽样是可微的.当与视觉transformer相结合时,获得的PS-ViT网络可以自适应地学习到哪里去看.…
​  前言  本文介绍了一个端到端的用于视觉跟踪的transformer模型,它能够捕获视频序列中空间和时间信息的全局特征依赖关系.在五个具有挑战性的短期和长期基准上实现了SOTA性能,具有实时性,比Siam R-CNN快6倍. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文:Learning Spatio-Temporal Transformer for Visual Tracking 代码:https:/…
​  前言  本文介绍一种新的tokens-to-token Vision Transformer(T2T-ViT),T2T-ViT将原始ViT的参数数量和MAC减少了一半,同时在ImageNet上从头开始训练时实现了3.0%以上的改进.通过直接在ImageNet上进行训练,它的性能也优于ResNet,达到了与MobileNet相当的性能. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文:Tokens-to-…
​前言  单阶段目标检测通常通过优化目标分类和定位两个子任务来实现,使用具有两个平行分支的头部,这可能会导致两个任务之间的预测出现一定程度的空间错位.本文提出了一种任务对齐的一阶段目标检测(TOOD),它以基于学习的方式显式地对齐这两个任务. TOOD在MS-CoCO上实现了51.1Ap的单模型单尺度测试.这大大超过了最近的单阶段检测器,如ATSS(47.7AP).GFL(48.2AP)和PAA(49.0AP),它们的参数和FLOPs更少. 本文来自公众号CV技术指南的论文分享系列 关注公众号C…
前言  本文汇总了过去本公众号原创的.国外博客翻译的.从其它公众号转载的.从知乎转载的等一些比较重要的文章,并按照论文分享.技术总结三个方面进行了一个简单分类.点击每篇文章标题可阅读详细内容 欢迎关注公众号 CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 今年是进入计算机视觉领域的第四年,做公众号的第一年,写了不少原创文章,从国外博客上翻译了不少我认为比较不错的文章,也从知乎上找了不少不错的文章在经作者授权后转载到公众号. 整体上来说,这一年基本保持初心,始终在做一…
原文地址 我对深度学习应用于物体检测的开山之作R-CNN的论文进行了主要部分的翻译工作,R-CNN通过引入CNN让物体检测的性能水平上升了一个档次,但该文的想法比较自然原始,估计作者在写作的过程中已经意识到这个问题,所以文中也对未来的改进提出了些许的想法,未来我将继续翻译SPPNet.fast-RCNN.faster-RCNN.mask-RCNN等一系列物体定位和语义分割领域的重要论文,主要作者都是Ross Girshick和Kaiming He. 用于精确物体定位和语义分割的丰富特征层次结构…
该论文的地址是:https://arxiv.org/pdf/1609.07720.pdf segmatch是一个提供车辆的回环检测的技术,使用提取和匹配分割的三维激光点云技术.分割的例子可以在下面的图片中看到. 该技术是基于在车辆附近提取片段(例如车辆.树木和建筑物的部分),并将这些片段与从目标地图中提取的片段相匹配.分段匹配可以直接转化为精确的定位信息,从而实现精确的三维地图构造和定位.在先前记录的部分(白色)和最近观察到的部分(彩色)之间,匹配的段的实例用绿色线显示在下面的图像中. 该方法依…