一.什么是知识图谱 知识(Knowledge)可以理解为 精炼的数据,知识图谱(Knowledge Graph)即是对知识的图形化表示,本质上是一种大规模语义网络 (semantic network) – 富含实体(entity). 概念(concepts) 及其之间的各种语义关系 (semantic relationships),比如 知识图谱和人工智能: 知识图谱的理想状态: 给所有IOT设备和机器人都挂一个背景知识库,因为对于人类来说,对一个事物的理解取决于这个人关于事物的相关背景知识,对…
Knowledge Graph - Wikipedia https://en.wikipedia.org/wiki/Knowledge_Graph The Knowledge Graph is a knowledge base used by Google and its services to enhance its search engine's results with information gathered from a variety of sources. The informat…
如今,越来越多的企业想要在电商客服.法律顾问等领域做一套包含行业知识的智能对话系统,而行业或领域知识的积累.构建.抽取等工作对于企业来说是个不小的难题,百度大脑UNIT3.0推出「我的知识」版块专门为开发者提供知识建设帮助.在行业智能化的实现进程中,通过知识图谱对数据进行提炼.萃取.关联.整合,形成行业知识或领域知识,让机器形成对于行业工作的认知能力,并把这些认知能力与技能理解模型进行整合,从而实现这个行业的知识型对话系统. [认知与对话智能] 首先举个简单的例子,让大家直观感受一下认知与对话智…
1. 通俗易懂解释知识图谱(Knowledge Graph) 2. 知识图谱-命名实体识别(NER)详解 3. 哈工大LTP解析 1. 前言 从一开始的Google搜索,到现在的聊天机器人.大数据风控.证券投资.智能医疗.自适应教育.推荐系统,无一不跟知识图谱相关.它在技术领域的热度也在逐年上升. 本文以通俗易懂的方式来讲解知识图谱相关的知识.尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了比较详细的解释. 知识图谱( Knowledge Graph)的概念由谷…
知识图谱(Knowledge Graph,KG)可以理解成一个知识库,用来存储实体与实体之间的关系.知识图谱可以为机器学习算法提供更多的信息,帮助模型更好地完成任务. 在推荐算法中融入电影的知识图谱,能够将没有任何历史数据的新电影精准地推荐给目标用户. 实例描述 现有一个电影评分数据集和一个电影相关的知识图谱.电影评分数据集里包含用户.电影及评分:电影相关的知识图谱中包含电影的类型.导演等属性. 要求:从知识图谱中找出电影间的潜在特征,并借助该特征及电影评分数据集,实现基于电影的推荐系统. 本实…
知识图谱综述(2021.4) 论文地址:A Survey on Knowledge Graphs: Representation, Acquisition, and Applications 目录 知识图谱综述(2021.4) 摘要 1.简介 2.概述 3.知识表示学习(KRL) 3.1 表示空间 3.1.1 点空间 3.1.2 复向量空间 3.1.3 高斯分布 3.1.4 流形和群 3.2 评分函数 3.2.1 基于距离的评分函数 3.2.2 基于语义匹配的评分函数 3.3 编码模型 3.3.…
简单说一下所谓Knowledge base(知识图谱)有两条路走,一条是对用户的问题进行语义理解,一般用Semantic Parsing(语义分析),语义分析有很多种,比如有用CCG.DCS,也有用机器翻译来做的.它得到了一个句子的逻辑表示,根据逻辑表示再到知识库里去查,查到这个结点是什么,关系是什么等,通过这种方式,自然而然就查到了. 还有一种办法就是最近几年流行的信息检索方法.比如,一个问题“where was Barack Obama born ?”这句话里出现的了一个实体——Obama,…
前言 本文由 Nebula Graph 实习生@王杰贡献. 最近 @Yener 开源了史上最大规模的中文知识图谱--OwnThink(链接:https://github.com/ownthink/KnowledgeGraphData ),数据量为 1.4 亿条. 本文介绍如何将这份数据快速导入图数据库 Nebula Graph,全过程大约需要 30 分钟. 中文知识图谱 OwnThink 简介 思知(OwnThink) 知识图谱是由 Google 在 2012 年提出来的一个概念.主要是用来描述…
本文由 Nebula Graph 实习生@王杰贡献. 最近 @Yener 开源了史上最大规模的中文知识图谱——OwnThink(链接:https://github.com/ownthink/KnowledgeGraphData),数据量为 1.4 亿条. 本文介绍如何将这份数据快速导入图数据库 Nebula Graph,全过程大约需要 30 分钟. 中文知识图谱 OwnThink 简介 思知(OwnThink) 知识图谱是由 Google 在 2012 年提出来的一个概念.主要是用来描述真实世界…
1. 通俗易懂解释知识图谱(Knowledge Graph) 2. 知识图谱-命名实体识别(NER)详解 3. 哈工大LTP解析 1. 前言 在解了知识图谱的全貌之后,我们现在慢慢的开始深入的学习知识图谱的每个步骤.今天介绍知识图谱里面的NER的环节. 命名实体识别(Named Entity Recognition,简称NER),是指识别文本中具有特定意义的实体,主要包括人名.地名.机构名.专有名词等.通常包括两部分:(1)实体边界识别:(2) 确定实体类别(人名.地名.机构名或其他). 2.…
KLMo:建模细粒度关系的知识图增强预训练语言模型 (KLMo: Knowledge Graph Enhanced Pretrained Language Model with Fine-Grained Relationships) 论文地址:https://aclanthology.org/2021.findings-emnlp.384.pdf 摘要 知识图谱(KG)中实体之间的交互作用为语言表征学习提供了丰富的知识.然而,现有的知识增强型预训练语言模型(PLMS)只关注实体信息,而忽略了实体…
论文标题: Mining On Alzheimer's Diseases Related Knowledge Graph to Identity Potential AD-related Semantic Triples for Drug Repurposing 论文地址: https://arxiv.org/pdf/2202.08712 论文期刊: BMC Bioinformatics 2022 9.(2022.2.17)BMC Bioinformatics-挖掘阿尔茨海默病相关KG来确定潜在…
5.(2021.7.12)Bioinformatics-KG4SL:用于人类癌症综合致死率预测的知识图神经网络 论文标题:KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers 论文地址:https://academic.oup.com/bioinformatics/article/37/Supplement_1/i418/6319703 论文期刊:Bioinformati…
Atitit 知识图谱解决方案:提供完整知识体系架构的搜索与知识结果overview   知识图谱的表示和在搜索中的展1 提升Google搜索效果3 1.找到最想要的信息.3 2.提供最全面的摘要.4 3.让搜索更有深度和广度.4   互联网正从仅包含网页和网页之间超链接的文档万维网(Document Web)转变成包含大量描述各种实体和实体之间丰富关系的数据万维网(Data Web).在这个背景下,Google.百度和搜狗等搜索引擎公司纷纷以此为基础构建知识图谱,分别为Knowledge Gr…
实体关系推理与知识图谱补全 Unsupervised Person Slot Filling based on Graph Mining 作者:Dian Yu, Heng Ji 机构:Computer Science Department, Rensselaer Polytechnic Institute 本文的任务为槽填充(Slot Filling),即从大规模的语料库中抽取给定实体(query)的被明确定义的属性(slot types)的值(slot fillers).对于此任务,本文叙述目…
一.前言 就IT而言,胖子哥算是老兵,可以去猝死的年纪,按照IT江湖猿龄的规矩,也算是到了耳顺之年:而就人工智能而言,胖子哥还是新人,很老的新人,深度学习.语音识别.人脸识别,知识图谱,逐个的学习了一遍,并在商业变现的项目中投入应用,语音识别.人脸识别和知识图谱.即使有十多年的技术底蕴,学起来也算颇费周章,用起来更是步步坎坷.实践过程中做了笔记,并且把内容整理成了系列课程2017年底份推出了<人工智能产品经理最佳实践>,2018年初推出了<知识图谱开发实战案例剖析>线下和线上的视频…
作者:Lingbing Guo.Qingheng Zhang.Weiyi Ge.Wei Hu.Yuzhong Qu 2018 年 8 月 14-17 日,主题为「知识计算与语言理解」的 2018 全国知识图谱与语义计算大会(CCKS 2018)在天津成功举办.该会议是由中国中文信息学会语言与知识计算专委会定期举办的全国年度学术会议,并致力于成为国内知识图谱.语义技术.链接数据等领域的核心会议.本届会议的最佳英文论文来自南京大学计算机软件新技术国家重点实验室和信息系统工程重点实验室,提出了一种用于…
本章,介绍 基于jena的规则引擎实现推理,并通过两个例子介绍如何coding实现. 规则引擎概述 jena包含了一个通用的规则推理机,可以在RDFS和OWL推理机使用,也可以单独使用. 推理机支持在RDF图上推理,提供前向链.后向链和二者混合执行模式.包含RETE engine 和 one tabled datalog engine.可以通过GenericRuleReasoner来进行配置参数,使用各种推理引擎.要使用 GenericRuleReasoner,需要一个规则集来定义其行为. Ru…
作者 | 平名 阿里服务端开发技术专家 导读:Kubernetes 作为云原生时代的“操作系统”,熟悉和使用它是每名用户的必备技能.本篇文章概述了容器服务 Kubernetes 的知识图谱,部分内容参考了网上的知识图谱,旨在帮助用户更好的了解 K8s 的相关知识. 概述 容器服务 Kubernetes 知识图谱,部分内容参考网上一知识图谱,更加结合阿里云容器服务. 原图 by 杨传胜 原图链接地址 https://www.processon.com/view/link/5ac64532e4b00…
一.摘要 为了解决协同过滤的稀疏性和冷启动问题,社交网络或项目属性等辅助信息被用来提高推荐性能. 考虑到知识图谱是边信息的来源,为了解决现有的基于嵌入和基于路径的知识图谱感知重构方法的局限性,本文提出了一种端到端框架,它自然地将知识图结合到推荐系统中. 与水上传播的实际涟漪类似,RippleNet通过在知识图谱实体集上传播用户兴趣,从而自主迭代地沿着知识图谱中的链接来扩展用户的潜在兴趣. 因此,由用户的历史点击项激活的多个“涟漪”被叠加以形成用户相对于候选项目的偏好分布,该偏好分布可用于预测最终…
K8s 学习者绝对不能错过的最全知识图谱(内含 58个知识点链接)   https://www.cnblogs.com/alisystemsoftware/p/11429164.html 需要加强学习呢. 作者 | 平名 阿里服务端开发技术专家 导读:Kubernetes 作为云原生时代的“操作系统”,熟悉和使用它是每名用户的必备技能.本篇文章概述了容器服务 Kubernetes 的知识图谱,部分内容参考了网上的知识图谱,旨在帮助用户更好的了解 K8s 的相关知识. 概述 容器服务 Kubern…
导读:Kubernetes 作为云原生时代的“操作系统”,熟悉和使用它是每名用户的必备技能.本篇文章概述了容器服务 Kubernetes 的知识图谱,部分内容参考了网上的知识图谱,旨在帮助用户更好的了解 K8s 的相关知识. 1.  概述 容器服务 Kubernetes 知识图谱,部分内容参考网上一知识图谱,更加结合阿里云容器服务. 原图来源:https://www.processon.com/view/link/5ac64532e4b00dc8a02f05eb#map 2. 链接和备注 类别…
项目简介 Project Brief <利用Python进行数据分析-第二版>自学过程中整理的知识图谱. Python for Data Analysis: Data Wrangling with Pandas, NumPy and IPython. Knowledge Graph was made in the process of self-study. 源文件emmx格式,源文件已经上传Github 项目指南 GitHub地址(源文件) https://github.com/JYRoy/…
前言 这篇论文主要讲的是知识图谱正确率的评估,将知识图谱的正确率定义为知识图谱中三元组表述正确的比例.如果要计算知识图谱的正确率,可以用人力一一标注是否正确,计算比例.但是实际上,知识图谱往往很大,不可能耗费这么多的人力去标注,所以一般使用抽样检测的方法.这就好像调查一批商品合格率一样,不可能将所有的商品都检查一遍,采用抽样的方法可以估计出合格率. 抽样产生的样本,我们利用中心极限定理,可以推导出样本均值服从正态分布.根据正态分布的概率形式,可以推导置信区间,并且可以要求误差界限(margin…
原创作者 | 杨健 论文标题: KEPLER: A unified model for knowledge embedding and pre-trained language representation 收录期刊: TACL 论文链接: https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00360/98089/ 项目地址: https://github.com/THU-KEG/KEPLE 01.问题 上一次我们介绍了ERNIE,其实…
原创作者 | 杨健 论文标题: K-BERT: Enabling Language Representation with Knowledge Graph 收录会议: AAAI 论文链接: https://ojs.aaai.org/index.php/AAAI/article/view/5681 项目地址: https://github.com/autoliuweijie/K-BERT 01 背景论述 笔者在前面的论文解读中提到过ERNIE使用基于自注意力机制来克服异构向量的融合,而KEPLER…
1 导引 在知识图谱领域,最重要的任务之一就是实体对齐 [1](entity alignment, EA).实体对齐旨在从不同的知识图谱中识别出表示同一个现实对象的实体.如下图所示,知识图谱\(\mathcal{G}_1\)和\(\mathcal{G}_2\)(都被虚线框起来)是采自两个大型知识图谱Wikida和DBpedia的小子集.圆角矩形框表示实体,方角矩形表示属性值.圆角矩形之间的箭头代表一个关系谓词(relation predicate),而这就进一步形成了关系元组,如\((\text…
知识图谱实体对齐2:基于GNN嵌入的方法 1 导引 我们在上一篇博客<知识图谱实体对齐1:基于平移(translation)嵌入的方法>中介绍了如何对基于平移嵌入+对齐损失来完成知识图谱中的实体对齐.这些方法都是通过两个平移嵌入模型来将知识图谱\(\mathcal{G}_1\)和\(\mathcal{G}_2\)的重叠实体分别进行嵌入,并加上一个对齐损失来完成对齐.不过,除了基于平移的嵌入模型之外,是否还有其它方式呢? 答案是肯定的.目前已经提出了许多基于GNN的实体对齐方法[1],这些方法不…
4.(2021.6.24)Briefings-生物信息学中的图表示学习:趋势.方法和应用 论文标题: Graph representation learning in bioinformatics: trends, methods and applications 论文期刊: Briefings in Bioinformatics 2021 论文地址: https://www.researchgate.net/profile/Haicheng-Yi/publication/354327323_G…
论文标题:Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries 论文地址: https://arxiv.org/abs/2208.07638 论文会议: KDD 2022 17.(2022.8.16)KDD-kgTransformer:复杂逻辑查询的预训练知识图谱Transformer 17.(2022.8.16)KDD-kgTransformer:复杂逻辑查询的预训练知识图谱…