桥接PyTorch和TVM】的更多相关文章

桥接PyTorch和TVM 人工智能最引人入胜的一些应用是自然语言处理.像BERT或GPT-2之类的模型及其变体,可以获住足够多的文本信息. 这些模型属于称为Transformers的神经网络类体系结构. HuggingFace transformers library是实现最受欢迎的库之一. 与已经高度优化的实现的卷积模型或LSTM相比,对于Transformers而言,情况并非如此.本文探索TVM如何填补空白.分两个步骤进行操作: 首先,在TVM上,使用BERT inference推理和调优…
将TVM集成到PyTorch 随着TVM不断展示出对深度学习执行效率的改进,很明显PyTorch将从直接利用编译器堆栈中受益.PyTorch的主要宗旨是提供无缝且强大的集成,而这不会妨碍用户.PyTorch现在具有基于TVM的官方后端torch_tvm. 用法很简单: import torch_tvm torch_tvm.enable() 就是这样!然后,PyTorch将尝试在其JIT编译过程中,将所有可能的算子转换为已知的Relay算子. 背景 与许多其它ML框架不同,PyTorch公开了一个…
将TVM集成到PyTorch上 随着TVM不断展示出对深度学习执行效率的改进,很明显PyTorch将从直接利用编译器堆栈中受益.PyTorch的主要宗旨是提供无缝且强大的集成,而这不会妨碍用户.为此,PyTorch现在具有基于TVM的官方后端torch_tvm. 用法很简单: import torch_tvm torch_tvm.enable() PyTorch将尝试在其JIT编译过程中,将所有可能的运算符转换为已知的Relay运算符. 背景 与许多其他ML框架不同,PyTorch公开了一个渴望…
前言 模型转换思路通常为: Pytorch -> ONNX -> TensorRT Pytorch -> ONNX -> TVM Pytorch -> 转换工具 -> caffe Pytorch -> torchscript(C++版本Torch) 我的模型是使用Pytorch1.0训练的,第三种方法应该是还不支持,没有对应层名字, 放弃. (以下是用方法3生成的网络结构图, 其中部分层名字和工具对应不上). 因此本文使用第4中方法,详细步骤分两步, 具体如下(目…
TVM量化小结手册 文章目录 Offical References TVM quantization roadmap INT8 quantization proposal Quantization Story - 2019-09 Quantization Development Quantization Framework supported by TVM TF Quantization Related Pytorch Quantization Related MXNet related Ten…
Hello TVM  发表于 2019-06-29 TVM 是什么?A compiler stack,graph level / operator level optimization,目的是(不同框架的)深度学习模型在不同硬件平台上提高 performance (我要更快!) TVM, a compiler that takes a high-level specification of a deep learning program from existing frameworks and…
TVM:一个端到端的用于开发深度学习负载以适应多种硬件平台的IR栈  本文对TVM的论文进行了翻译整理 深度学习如今无处不在且必不可少.这次创新部分得益于可扩展的深度学习系统,比如 TensorFlow.MXNet.Caffe 和 PyTorch.大多数现有系统针对窄范围的服务器级 GPU 进行了优化,并且需要在其他平台(如手机.IoT 设备和专用加速器(FPGA. ASIC))上部署大量工作.随着深度学习框架和硬件后端数量不断增加,我们提出了一个统一的中间表征(IR)堆栈,可以弥补以生产力为中…
使用Apache TVM将机器学习编译为WASM和WebGPU TLDR 在Apache TVM深度学习编译器中引入了对WASM和WebGPU的支持.实验表明,在将模型部署到Web时,TVM的WebGPU后端可以接近本机 GPU的性能. 概述 计算是现代机器学习应用程序的支柱之一.GPU的引入加快了深度学习的工作量,极大地提高了运行速度.部署机器学习的需求不断增长,浏览器已成为部署智能应用程序的自然之所. TensorFlow.js和ONNX.js将机器学习引入浏览器,但Web版本和本机版本之间…
TVM适配NN编译Compiler缺陷 内容纲要 前言 TVM针对VTA的编译流程 自定义VTA架构:TVM的缺陷与性能瓶颈 TVM缺陷与瓶颈 缺陷一:SRAM配置灵活性差 缺陷二:计算阵列配置僵硬 缺陷三:网络支持少 TVM源码修改之静态调度搜索算法 前言 前文NN编译栈之TVM研究报告深度分析TVM的源码结构,编译器特点.本文介绍TVM的当前缺陷以及如何修改源代码弥补缺陷并适配自己开发的神经网络加速器.不久会在GitHub上开源自己的适配修改工作并向TVM仓库提交新的版本.   现在主流的深…
TVM 高效保护隐私 ML 这篇文章描述了Myelin,一个在值得信赖的硬件飞地中保护隐私的机器学习框架,以及TVM如何使Myelin快速.关键的想法是,TVM,不像其它流行的ML框架,将模型编译成轻量级,优化,免费依赖库,可以适应资源有限利用. 尝试创建保护隐私的ML模型!查看 TVM可用的repo示例代码. 目的:隐私保护ML 机器学习模型受益于庞大而多样化的数据集.遗憾的是,使用此类数据集通常需要信任集中数据聚合器或计算提供商.对于敏感的应用程序,如医疗保健和金融,这是不可取的,因为可能会…