高效Tensor张量生成】的更多相关文章

高效Tensor张量生成 Efficient Tensor Creation 从C++中的Excel数据中创建Tensor张量的方法有很多种,在简单性和性能之间都有不同的折衷.本文讨论了一些方法及其权衡. 提示 继续阅读之前请务必阅读C++指南 将数据直接写入Tensor张量 如果能做到这一点就更好了. 不要复制数据或包装现有数据,而是直接将数据写入Tensor张量. 正向 对于进程内和进程外的执行,这将在没有副本的情况下工作 没有内存对齐要求 不需要使用删除程序 反向 可能需要对现有的应用程序…
pytorch张量数据类型入门1.对于pytorch的深度学习框架,其基本的数据类型属于张量数据类型,即Tensor数据类型,对于python里面的int,float,int array,flaot array对应于pytorch里面即在前面加一个Tensor即可——intTensor ,Float tensor,IntTensor of size [d1,d2...], FloatTensor of size[d1,d2,...]2.对于pytorch,并不能表示string类型的数据类型,一…
- 重点掌握基本张量使用及与numpy的区别 - 掌握张量维度操作(拼接.维度扩展.压缩.转置.重复……) numpy基本操作: numpy学习4:NumPy基本操作 NumPy 教程 1. Tensorflow Tensorflow一些常用基本概念与函数(1,2,3,4) tensorflow与numpy函数的选择 Tensorflow 和numpy区别 相同点: 都提供n位数组 不同点: numpy支持ndarray,而Tensorflow里有tensor:numpy不提供创建张量函数和求导…
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/tensor_introduce1.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/tensor_introduce1.py Tensor 的概念 Tensor 中文为张量.张量的意思是一个多维数组,它是标量.向量.矩阵的高维扩展. 标量可以称为 0 维张量,向…
1.tensorflow的数据流图限制了它的tensor是只读属性,因此对于一个Tensor(张量)形式的矩阵,想修改特定位置的元素,比较困难. 2.我要做的是将所有的操作定义为符号形式的操作.也就是抽象概念的数据流图.当用feed_dict传入具体值以后,就能用sess.run读出具体值. 一.相关内容 https://blog.csdn.net/Cerisier/article/details/79584851 Tensorflow小技巧整理:修改张量特定元素的值 二.修改矩阵的某一列 代码…
详见[Reference]: TensorFlow中的“Tensor”到底是什么? 以下摘录一些要点: 这个图好生动呀!~ 标量和向量都是张量(tensor).…
import torch import numpy as np print(torch.tensor([1,2,3])) print(torch.tensor(np.arange(15).reshape(3,5))) print(torch.empty([3,4])) print(torch.ones([3,4])) print(torch.zeros([3,4])) #0-1之间的随机数 print(torch.rand([2,3])) #3-10之间的随机整数 print(torch.ran…
Java原生的UUID长度为36位,嫌长 这里自己实现了一套自己的算法,来生成较短的UUID 由雪花算法启发而来, 大致原理是利用时间戳+随机值做值,然后转换成62进制(当然这个进制数你也可以搞成更多) 有一些参数可以控制一些行为,都在注释里了 你可以自己修改digits数组,乱乱序啥的,混淆一下,随机性可能更好一些 /** * Java 原生的UUID为36位 or 32位,太长. 这里提供一个位数较短的UUID. * <p> * UUID生成规则,当前时间减去'零时'的毫秒数 + N位随机…
TensorFlow提供两种类型的拼接: tf.concat(values, axis, name='concat'):按照指定的已经存在的轴进行拼接 tf.stack(values, axis=0, name='stack'):按照指定的新建的轴进行拼接 concat t1 = [[1, 2, 3], [4, 5, 6]] t2 = [[7, 8, 9], [10, 11, 12]] tf.concat([t1, t2], 0) ==> [[1, 2, 3], [4, 5, 6], [7, 8…
tensorflow的命名来源于本身的运行原理,tensor(张量)意味着N维数组,flow(流)意味着基于数据流图的计算,所以tensorflow字面理解为张量从流图的一端流动到另一端的计算过程. tensorflow中的所有数据如图片.语音等都是以张量这种数据结构的形式表示的.张量是一种组合类型的数据类型,表示为一个多维数组,通用的表示形式为 [T1,T2,T3,-Tn]  ,其中 T  可以是在tensorflow中指定类型的单个数字,也可以是一个矩阵.张量(tensor)的属性--维数(…