图神经网络(GNN)--slide】的更多相关文章

[清华NLP]图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐 图神经网络研究成为当前深度学习领域的热点.最近,清华大学NLP课题组Jie Zhou, Ganqu Cui, Zhengyan Zhang and Yushi Bai同学对 GNN 相关的综述论文.模型与应用进行了综述,并发布在 GitHub 上.16大应用包含物理.知识图谱等最新论文整理推荐. GitHub 链接: https://github.com/thunlp/GNNPapers 目录            …
项目链接:https://aistudio.baidu.com/aistudio/projectdetail/4990947?contributionType=1 欢迎fork欢迎三连!文章篇幅有限,部分程序出图不一一展示,详情进入项目链接即可 图机器学习(GML)&图神经网络(GNN)原理和代码实现(PGL)[前置学习系列二] 上一个项目对图相关基础知识进行了详细讲述,下面进图GML networkx :NetworkX 是一个 Python 包,用于创建.操作和研究复杂网络的结构.动力学和功…
文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | AI研习社 作者|Zonghan Wu 这是一个与图神经网络相关的资源集合.相关资源浏览下方Github项目地址,再点击对应链接跳转下载. 01Github项目地址: https://github.com/nnzhan/Awesome-Graph-Neural-Networks 02调查报告 A Comprehensive Survey on Graph Neural Networks. …
课件是学习小组汇报时用的,许多资料是从大佬哪里搬运的.Tex文档也在里面. GNN课件,下载不了,可以点击 带你入门图神经网络(GNN) 图神经网络(GNN)学习推荐网址 傅里叶分析之掐死教程(完整版)更新于2014.06.06…
图神经网络小结 图神经网络小结 图神经网络分类 GCN: 由谱方法到空域方法 GCN概述 GCN的输出机制 GCN的不同方法 基于谱方法的GCN 初始 切比雪夫K阶截断: ChebNet 一阶ChebNet 自适应图卷积网络AGCN 谱方法小结 基于空域方法GCN 基于递归的空间GCN(Recurrent-based Spatial GCNs) 图神经网络GNN(特指早期的一种结构) 门控图神经网络(GGNN) 随机稳态嵌入SSE 基于合成的空间GCN(Composition Based Spa…
5.(2021.7.12)Bioinformatics-KG4SL:用于人类癌症综合致死率预测的知识图神经网络 论文标题:KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers 论文地址:https://academic.oup.com/bioinformatics/article/37/Supplement_1/i418/6319703 论文期刊:Bioinformati…
目录 Graph Neural Network Graph Convolutional Network GraphSAGE Graph Attention Network Tips Deep Generative Models for Graphs GraphRNN: a Auto-Regressive Models Tractability 转自本人:https://blog.csdn.net/New2World/article/details/106160122 Graph Neural N…
简介 Graph Neural Networks 简称 GNN,称为图神经网络,是深度学习中近年来一个比较受关注的领域.近年来 GNN 在学术界受到的关注越来越多,与之相关的论文数量呈上升趋势,GNN 通过对信息的传递,转换和聚合实现特征的提取,类似于传统的 CNN,只是 CNN 只能处理规则的输入,如图片等输入的高.宽和通道数都是固定的,而 GNN 可以处理不规则的输入,如点云等. 可查看[GNN]万字长文带你入门 GCN. 而 PyTorch Geometric Library (简称 Py…
小蚂蚁说: ACM CIKM 2018 全称是 The 27th ACM International Conference on Information and Knowledge Management,会议于2018年10月22日-26日在意大利都灵省举行.CIMK 是国际计算机学会(ACM)举办的信息检索.知识管理和数据库领域的重要学术会议.本次大会目的在于明确未来知识与信息系统发展将面临的挑战和问题,并通过征集和评估应用性和理论性强的高质量研究成果以确定未来的研究方向.本篇文章分享了蚂蚁金…
环境配置与PyG中图与图数据集的表示和使用 一.引言 PyTorch Geometric (PyG)是面向几何深度学习的PyTorch的扩展库,几何深度学习指的是应用于图和其他不规则.非结构化数据的深度学习.基于PyG库,我们可以轻松地根据数据生成一个图对象,然后很方便的使用它:我们也可以容易地为一个图数据集构造一个数据集类,然后很方便的将它用于神经网络. 通过此节的实践内容,我们将 首先学习程序运行环境的配置. 接着学习PyG中图数据的表示及其使用,即学习PyG中Data类. 最后学习PyG中…
自己讲论文做的异构图神经网络的ppt.再转变成博客有点麻烦,所以做成图片笔记. 论文链接:https://arxiv.org/abs/1903.07293…
目录 Capturing Graph Structure Graph Isomorphism Network Vulnerability to Noise 转自本人:https://blog.csdn.net/New2World/article/details/106626551 这一个 Lecture 前还有一个关于 Knowledge Graph 的 slide 我打算跳过,因为 KG 我现在还没有深入研究,可能以后有空会系统地写一个系列,因此现在就不要先入为主了.后面也还有一个 slide…
GCN代码实战 书中5.6节的GCN代码实战做的是最经典Cora数据集上的分类,恰当又不恰当的类比Cora之于GNN就相当于MNIST之于机器学习. 有关Cora的介绍网上一搜一大把我就不赘述了,这里说一下Cora这个数据集对应的图是怎么样的. Cora有2708篇论文,之间有引用关系共5429个,每篇论文作为一个节点,引用关系就是节点之间的边.每篇论文有一个1433维的特征来表示某个词是否在文中出现过,也就是每个节点有1433维的特征.最后这些论文被分为7类. 所以在Cora上训练的目的就是学…
第6章 GCN的性质 第5章最后讲到GCN结束的有些匆忙,作为GNN最经典的模型,其有很多性质需要我们去理解. 6.1 GCN与CNN的区别与联系 CNN卷积卷的是矩阵某个区域内的值,图卷积在空域视角下卷的是节点的邻居的值,由此粗略来看二者都是在聚合邻域的信息. 再具体来看一些区别与联系: 图像是一种特殊的图数据 图数据经常是非结构化的,能够表达数据间更复杂的关系.考虑对图像进行卷积时卷的是某一像素周围\(3\times3\)的像素,将中间的像素看作节点,那么周围的像素就是其邻居,相当于CNN在…
作为人工智能最前沿的技术之一,图深度学习被公认是人工智能认识世界实现因果推理的关键,也是深度学习未来发展的方向.但深度学习对图数据模型的支持性差一直是众多研究者难以攻克的难点,因此图深度学习在实际生产中一直难以得到普及. 不过,图深度学习的瓶颈即将被打破.华为云计划9月推出的一站式AI开发平台ModelArts多个关键新特性中,将新增图深度学习功能.ModelArt联合图引擎打造的"图神经网络",让图深度学习真正落地,加速实现普惠AI. 强大图引擎助力突破图深度学习瓶颈 尽管图深度学习…
介绍 我们正在定义一种新的机器学习方法,专注于一种新的范式 -- Data Fabric. 在上一篇文章中,我们对机器学习给出了新的定义: 机器学习是一种自动发现Data Fabric中隐藏的"洞察力"(insight)的过程,它使用的算法能够发现这些"洞察力"(insight),而无需专门为此编写程序,从而创建模型来解决特定(或多个)问题. 理解这一点的前提是我们创建了一个Data Fabric.对我来说,最好的工具就是Anzo,正如我之前提到的. 你可以使用An…
4.(2021.6.24)Briefings-生物信息学中的图表示学习:趋势.方法和应用 论文标题: Graph representation learning in bioinformatics: trends, methods and applications 论文期刊: Briefings in Bioinformatics 2021 论文地址: https://www.researchgate.net/profile/Haicheng-Yi/publication/354327323_G…
MorsE:归纳知识图嵌入的元知识迁移 论文题目: Meta-Knowledge Transfer for Inductive Knowledge Graph Embedding 论文地址: https://scholar.archive.org/work/soegy2qe5jbbxbzdwrpgjvmhba/access/wayback/https://dl.acm.org/doi/pdf/10.1145/3477495.3531757 论文会议: ACM SIGIR 2022 目录 13.(…
本项目参考: https://aistudio.baidu.com/aistudio/projectdetail/5012408?contributionType=1 *一.正题篇:DeepWalk.word2vec.node2vec 其它相关项目: 关于图计算&图学习的基础知识概览:前置知识点学习(PGL)[系列一] https://aistudio.baidu.com/aistudio/projectdetail/4982973?contributionType=1 图机器学习(GML)&am…
Paddle Graph Learning (PGL)图学习之图游走类模型[系列四] 更多详情参考:Paddle Graph Learning 图学习之图游走类模型[系列四] https://aistudio.baidu.com/aistudio/projectdetail/5002782?contributionType=1 相关项目参考: 关于图计算&图学习的基础知识概览:前置知识点学习(PGL)[系列一] https://aistudio.baidu.com/aistudio/projec…
CVPR 2020 共收录 1470篇文章,根据当前的公布情况,人工智能学社整理了以下约100篇,分享给读者. 代码开源情况:详见每篇注释,当前共15篇开源.(持续更新中,可关注了解). 算法主要领域:图像与视频处理,图像分类&检测&分割.视觉目标跟踪.视频内容分析.人体姿态估计.模型加速.网络架构搜索(NAS).生成对抗(GAN).光学字符识别(OCR).人脸识别.三维重建等方向. 目录如下: 总目录 图像处理 Deep Image Harmonization via Domain Ve…
CVPR 2020 共收录 1470篇文章,根据当前的公布情况,人工智能学社整理了以下约100篇,分享给读者. 代码开源情况:详见每篇注释,当前共15篇开源.(持续更新中,可关注了解). 算法主要领域:图像与视频处理,图像分类&检测&分割.视觉目标跟踪.视频内容分析.人体姿态估计.模型加速.网络架构搜索(NAS).生成对抗(GAN).光学字符识别(OCR).人脸识别.三维重建等方向. 目录如下: # 总目录 # 图像处理 1. Deep Image Harmonization via Do…
14 TEMPORAL GRAPH NETWORKS FOR DEEP LEARNING ON DYNAMIC GRAPHS link:https://scholar.google.com.hk/scholar_url?url=https://arxiv.org/pdf/2006.10637.pdf%3Fref%3Dhttps://githubhelp.com&hl=zh-TW&sa=X&ei=oVakYtvtIo74yASQ1Jj4AQ&scisig=AAGBfm0bNv…
6.(2021.9.14)Briefings-MPG:一种有效的自我监督框架,用于学习药物分子的全局表示以进行药物发现 论文标题:An effective self-supervised framework for learning expressive molecular global representations to drug discovery 论文期刊:Briefings in Bioinformatics 2021 论文地址:https://www.researchgate.net…
论文标题:Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries 论文地址: https://arxiv.org/abs/2208.07638 论文会议: KDD 2022 17.(2022.8.16)KDD-kgTransformer:复杂逻辑查询的预训练知识图谱Transformer 17.(2022.8.16)KDD-kgTransformer:复杂逻辑查询的预训练知识图谱…
知识图谱综述(2021.4) 论文地址:A Survey on Knowledge Graphs: Representation, Acquisition, and Applications 目录 知识图谱综述(2021.4) 摘要 1.简介 2.概述 3.知识表示学习(KRL) 3.1 表示空间 3.1.1 点空间 3.1.2 复向量空间 3.1.3 高斯分布 3.1.4 流形和群 3.2 评分函数 3.2.1 基于距离的评分函数 3.2.2 基于语义匹配的评分函数 3.3 编码模型 3.3.…
摘要:本文提出一种基于局部特征保留的图卷积网络架构,与最新的对比算法相比,该方法在多个数据集上的图分类性能得到大幅度提升,泛化性能也得到了改善. 本文分享自华为云社区<论文解读:基于局部特征保留的图卷积神经网络架构(LPD-GCN)>,原文作者:PG13 . 近些年,很多研究者开发了许多基于图卷积网络的方法用于图级表示学习和分类应用.但是,当前的图卷积网络方法无法有效地保留图的局部信息,这对于图分类任务尤其严重,因为图分类目标是根据其学习的图级表示来区分不同的图结构.为了解决该问题,这篇文章提…
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三) 在上一篇博客中,我们简单介绍了基于循环图神经网络的两种重要模型,在本篇中,我们将着大量笔墨介绍图卷积神经网络中的卷积操作.接下来,我们将首先介绍一下图卷积神经网络的大概框架…
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三) 笔者最近看了一些图与图卷积神经网络的论文,深感其强大,但一些Survey或教程默认了读者对图神经网络背景知识的了解,对未学过信号处理的读者不太友好.同时,很多教程只讲是什么…
最近做了一些和gnn相关的工作,经常听到GCN 和 embedding 相关技术,感觉很是困惑,所以写下此博客,对相关知识进行索引和记录: 参考链接: https://www.toutiao.com/a6690680620642730510/ graph embedding 技术学习 如何理解 Graph Convolutional Network(GCN): https://www.zhihu.com/question/54504471/answer/332657604 卷积神经网络的卷积核:…