数据集本身的分析技巧           作者:王立敏           文章来源:网络 1.数据集 数据集,又称为资料集.数据集合或资料集合,是一种由数据所组成的集合. Data set(或dataset)是一个数据的集合,通常以表格形式出现.每一列代表一个特定变量.每一行都对应于某一成员的数据集的问题.它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数.每个数值被称为数据资料.对应于行数,该数据集的数据可能包括一个或多个成员. 2.数据分析 数据结构 创建向量和矩阵 函数c(…
提到数据挖掘,我们的第一个反应是之前的啤酒和尿布的故事听说过,这个故事是一个典型的数据挖掘关联规则.篮分析的传统线性回归之间的主要差别的差别,对于离散数据的相关性分析: 常见的关联规则: 关联规则:牛奶=>卵子[支撑=2%,置信度=60%] 支持度:分析中的所有事务的2%同一时候购买了牛奶和鸡蛋,需设定域值,来限定规则的产生. 置信度:购买了牛奶的筒子有60%也购买了鸡蛋,需设定域值,来限定规则的产生. 最小支持度阈值和最小置信度阈值:由挖掘者或领域专家设定. 与关联分析相关的专业术语包含: 项…
本文对应<R语言实战>第9章:方差分析:第10章:功效分析 ==================================================================== 方差分析: 回归分析是通过量化的预测变量来预测量化的响应变量,而解释变量里含有名义型或有序型因子变量时,我们关注的重点通常会从预测转向组别差异的分析,这种分析方法就是方差分析(ANOVA).因变量不只一个时,称为多元方差分析(MANOVA).有协变量时,称为协方差分析(ANCOVA)或多元协方差分析…
利用R语言中的quantmod包和fBasics对股票数据的获取和简要的分析, 通过获取的数据进行典型图像绘制,使用JB正态性检验来检验是否服从于正态分布. 前提概要:quantmod 包默认是访问 yahoo finance 的数据,其中包括上证和深证的股票数据,还有港股数据.上证代码是 ss,深证代码是 sz,港股代码是 hk比如茅台:6000519.ss,万科 000002.sz,长江实业 0001.hk在R的控制台里使用如下命令:> library(quantmod)> setSymb…
博客总目录:http://www.cnblogs.com/weibaar/p/4507801.html ---- 自从买了kindle以后,总是想要定期刷有没有便宜的书,amazon经常有些1元/2元的书打特价,但是每次都去刷那些榜单太麻烦了,而且榜单又不能按照价格排名,捞书有点累 所以自己用R语言的rvest包简单写了一个小程序,让它自动按照不同价格区间把特价书给分出来. 主要看的是kindle新品排行榜和最快畅销榜. 销售爬升最快榜: http://www.amazon.cn/gp/move…
自从买了kindle以后,总是想要定期刷有没有便宜的书,amazon经常有些1元/2元的书打特价,但是每次都去刷那些榜单太麻烦了,而且榜单又不能按照价格排名,捞书有点累 所以自己用R语言的rvest包简单写了一个小程序,让它自动按照不同价格区间把特价书给分出来. 主要看的是kindle新品排行榜和最快畅销榜. 销售爬升最快榜: http://www.amazon.cn/gp/movers-and-shakers/digital-text/ 新品榜: http://www.amazon.cn/gp…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习还是随机森林或支持向量机?>(作者Bio:SebastianRaschka)中提到,在日常机器学习工作或学习中,当我们遇到有监督学习相关问题时,不妨考虑下先用简单的假设空间(简单模型集合),例如线性模型逻辑回归.若效果不好,也即并没达到你的预期或评判效果基准时,再进行下换其他更复杂模型来实验. ----…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言︱文本挖掘套餐包之--XML+tm+SnowballC包 笔者寄语:文本挖掘.情感分析是目前非结构数据非常好用.有效的分析方式. 先针对文本挖掘这个套餐包做个简单了解.一般来说一个完整的文本挖掘解决流程是: 网页爬取数据--数据格式转化(分隔)--建立语料库--词频去噪--提取词干--创建文档-词频矩阵--后续分析(聚类.词云等) XML…
教材目录 第一部分 入门 第一章 R语言介绍 第二章 创建数据集 第三章 图形初阶 第四章 基本数据管理 第五章 高级数据管理 第二部分 基本方法 第六章 基本图形 第七章 基本统计方法 第三部分 中级方法 第八章 回归 第九章 方差分析 第十章 功效分析 第十一章 中级绘图 第十二章 重抽样与自助法 第四部分 高级方法 第十三章 广义线性模型 第十四章 主成分和因子分析 第十五章 处理缺失数据的高级方法 第十六章 高级图形进阶 第一章 R语言介绍   第二章 创建数据集   第三章 图形初阶…
1. 背景 R语言和Python用于数据分析和数据处理,并生成相应的直方图和散点图 需要实现一个展示平台,后端使用Java,分别调用R语言和调用Python,并返回数据和图给前端显示 这个平台主要实现多维度数据的特征选择,以及数据集协变量偏移(Covariate shift)的纠正的功能 本质就是一个Java调用R语言以及Java调用Python的Demo,做得很简单,大神勿喷 2. 技术栈 Java 用的是 Springboot R语言 Python 前端用的是 Vue + ElementUI…