问题: 已知$A=a_{0..n-1}$, $B=b_{0..n-1}$, 求$C=c_{0..2n-2}$,使: $$c_i = \sum_{j=0}^ia_jb_{i-j}$$ 定义$C$是$A$,$B$的卷积,记作 $$C = A * B$$ 例如多项式乘法等. 朴素做法是按照定义枚举$i$和$j$,但这样时间复杂度是$O(n^2)$. 能不能使时间复杂度降下来呢? 点值表示法: 我们把$A$,$B$,$C$看作多项式. 即: $$A(x) = \sum_{i=0}^{n-1}a_ix^i…
[OI向]快速傅里叶变换(Fast Fourier Transform) FFT的作用 ​ 在学习一项算法之前,我们总该关心这个算法究竟是为了干什么. ​ (以下应用只针对OI) ​ 一句话:求多项式乘法(当然它的实际用处很多) ​ 设多项式 ​ \(A(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n\) ​ \(B(x)=b_0+b_1x+b_2x^2+\ldots+b_mx^m\) ​ 我们想求 \(F(x)=A(x)B(x)=\sum\limits_{i=0}^n\sum…
实验要求: Objective: To further understand the well-known algorithm Fast Fourier Transform (FFT) and verify its effectiveness to calculate the discrete Fourier transform (DFT). Main requirements: Ability of programming with C, C++, or Matlab. Instruction…
前言 快速傅里叶变换(\(\text{Fast Fourier Transform,FFT}\) )是一种能在\(O(n \log n)\)的时间内完成多项式乘法的算法,在\(OI\)中的应用很多,是多项式相关内容的基础.下面从头开始介绍\(\text{FFT}\). 前置技能:弧度制.三角函数.平面向量. 多项式 形如\(f(x)=a_0+a_1x+a_2x^2+...+a_nx^n\)的式子称为\(x\)的\(n\)次多项式.其中\(a_0,a_1,...,a_n\)称为多项式的系数. 系数…
\(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一个人的自学能力锻炼到了极致\(qwq\) 好的,那我们就开始我们的飞飞兔\(FFT\)算法吧! 偷偷说一句,\(FFT\)的代码十分的短哦~并且如果你不喜欢看算法,你可以翻到最下面看心得哟! 写在前面 ·好多你不理解的地方在代码里就只有半行. ·三个引理中,只有消去引理跟算法的实现没有关系--消去引…
模板题: 给定$n = 2^k$和两个序列$A_{0..n-1}$, $B_{0..n-1}$,求 $$C_i = \sum_{j \oplus k = i} A_j B_k$$ 其中$\oplus$是某一满足交换律的位运算,要求复杂度$O(nlogn)$. 快速沃尔什变换: 这是什么东西?有用吗?请参阅SDOI2017r2d1-cut. 看到这个大家是不是立刻想到了快速傅里叶变换? $$C_i = \sum_{j + k = i} A_j B_k$$ 我们来想想离散傅里叶变换的本质. $$\b…
上次的博客有点模糊的说...我把思路和算法实现说一说吧... 思路 关于快速沃尔什变换,为了方便起见,我们采用线性变换(非线性变换不会搞). 那么,就会有一个变化前各数值在变换后各处的系数,即前一篇博文中的$f(i,j)$,表示线性变换中第$i$项到第$j$项的系数. 即 $$DWT(A)_i = \sum_{j=0}^{n-1} A_j * f(i,j)$$ 那么,我们既然要求$\oplus$卷积在变换后等价于乘积,就有 $$DWT(A)_i * DWT(B)_i = DWT(C)_i$$ 其…
1. 官方形象展示FFT:https://www.bilibili.com/video/av19141078/?spm_id_from=333.788.b_636f6d6d656e74.6 2. 讲解的不错:  https://blog.csdn.net/zb1165048017/article/details/80669105…
湘潭邀请赛的一题,名字叫"超级FFT"最终暴力就行,还是思维不够灵活,要吸取教训. 由于每组数据总量只有1e5这个级别,和不超过1e6,故先预处理再暴力即可. #include<cstdio> #include<iostream> #include<cstdlib> #include<cstring> #include<string> #include<algorithm> #include<map>…
写在前面的.. 感觉自己是应该学点新东西了.. 所以就挖个大坑,去学FFT了.. FFT是个啥? 挖个大坑,以后再补.. 推荐去看黑书<算法导论>,讲的很详细 例题选讲 1.UOJ #34. 多项式乘法 这是FFT最裸的题目了 FFT就是拿来求这个东西的 没啥好讲的,把板子贴一下吧.. #include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> #inc…