一.正态分布参数检验 例1. 某种原件的寿命X(以小时计)服从正态分布N(μ, σ)其中μ, σ2均未知.现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264                  222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于255小时? 解:按题意,需检验 H0: μ ≤ 225     H1: μ >  225 此问题属于单边检验问题 可以使用R语言t.test t.test(x,y=N…
先言:R语言常用界面操作 帮助:help(nnet) = ?nnet =??nnet 清除命令框中所有显示内容:Ctrl+L 清除R空间中内存变量:rm(list=ls()).gc() 获取或者设置当前工作目录:getwd.setwd 保存指定文件或者从磁盘中读取出来:save.load 读入.读出文件:read.table.wirte.table.read.csv.write.csv 1.一些简单的基本统计量 #基本统计量 sum/mean/sd/min #一些基本统计量 which.min(…
Data Frame一般被翻译为数据框,感觉就像是R中的表,由行和列组成,与Matrix不同的是,每个列可以是不同的数据类型,而Matrix是必须相同的. Data Frame每一列有列名,每一行也可以指定行名.如果不指定行名,那么就是从1开始自增的Sequence来标识每一行. 初始化 使用data.frame函数就可以初始化一个Data Frame.比如我们要初始化一个student的Data Frame其中包含ID和Name还有Gender以及Birthdate,那么代码为: studen…
Data Frame一般被翻译为数据框,感觉就像是R中的表,由行和列组成,与Matrix不同的是,每个列可以是不同的数据类型,而Matrix是必须相同的. Data Frame每一列有列名,每一行也可以指定行名.如果不指定行名,那么就是从1开始自增的Sequence来标识每一行. 初始化 使用data.frame函数就可以初始化一个Data Frame.比如我们要初始化一个student的Data Frame其中包含ID和Name还有Gender以及Birthdate,那么代码为: studen…
y,X1,X2,X3 分别表示第 t 年各项税收收入(亿元),某国生产总值GDP(亿元),财政支出(亿元)和商品零售价格指数(%). (1) 建立线性模型: ① 自己编写函数: > library(openxlsx) > data = read.xlsx("22_data.xlsx",sheet = 1) > x = data[,-c(1,2)] > x = cbind(rep(1,17),x) > x_mat = as.matrix(x) > y…
R语言中文社区历史文章整理(类型篇)   R包: R语言交互式绘制杭州市地图:leafletCN包简介 clickpaste包介绍 igraph包快速上手 jiebaR,从入门到喜欢 Catterplots包,让你绘制不一样的图 今天再来谈谈REmap包 ggplot2你需要知道的都在这... R访问数据库管理系统(通过RODBC包和RMySQL包两种方式) NLP——自然语言处理(三)text2vec包 Rattle:数据挖掘的界面化操作 借助caret包实现特征选择的工作 R语言的高质量图形…
  R是一个惊艳的图形构建平台,这也是R语言的强大之处.本文将分享R语言简单的绘图命令.   本文所使用的数据或者来自R语言自带的数据(mtcars)或者自行创建.   首先,让我们来看一个简单例子: dose <- c(20, 30, 40, 45, 60) drugA <- c(16,20,27,40,60) plot(dose, drugA) 绘制的图形如下:   我们有必要对上述代码做些说明:首句和第二条语句创建两个向量,第三条语句打开一个图形窗口并生成一幅散点图.   这也许是个极为…
对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来.当然,这不是最好的学习方式,最好的方式是——看书.目前,市面上介绍R语言的书籍很多,中文英文都有.那么,众多书籍中,一个生手应该从哪一本着手呢?入门之后如何才能把自己练就成某个方面的高手呢?相信这是很多人心中的疑问.有这种疑问的人有福了,因为笔者将根据自己的经历总结一下R语言书籍的学习路线图以使Ruser少走些弯路. 本文分为6个部分,分别介绍初级入门,高级入门,绘图与可…
dplyr包是Hadley Wickham的新作,主要用于数据清洗和整理,该包专注dataframe数据格式,从而大幅提高了数据处理速度,并且提供了与其它数据库的接口:tidyr包的作者是Hadley Wickham, 该包用于“tidy”你的数据,这个包常跟dplyr结合使用. dplyr.tidyr包安装及载入 install.packages("dplyr") install.packages("tidyr") library(dplyr) library(t…
第5章工欲善其事.必先利其器 代码,是延伸我们思想最好的工具. 第6章基础编程--用别人的包和函数讲述自己的故事 6.1编程环境 1.R语言的三段论 大前提:计算机语言程序=算法+数据结构 小前提:R语言不过是计算机语言的一种 结论:R语言约等于基础编程+数据对象 2.运行机制 RStudio=记事本+R Console 6.2Mini案例 学生文理分科小案例(还有问题) R仅有的命令形式是返回结果的函数和表达式 赋值是一种常见的操作:对象的读取.转换.模型的建立等 赋值给新的对象,往往也意味着…
1.R语言重要数据集分析研究需要整理分析阐明理念? 上一节讲了R语言作图,本节来讲讲当你拿到一个数据集的时候如何下手分析,数据分析的第一步,探索性数据分析. 统计量,即统计学里面关注的数据集的几个指标,常用的如下:最小值,最大值,四分位数,均值,中位数,众数,方差,标准差,极差,偏度,峰度 先来解释一下各个量得含义,浅显就不说了,这里主要说一下不常见的 众数:出现次数最多的 方差:每个样本值与均值的差得平方和的平均数 标准差:又称均方差,是方差的二次方根,用来衡量一个数据集的集中性 极差:最大值…
版权声明:本文为博主原创文章,转载请注明出处   机器学习的研究领域是发明计算机算法,把数据转变为智能行为.机器学习和数据挖掘的区别可能是机器学习侧重于执行一个已知的任务,而数据发掘是在大数据中寻找有价值的东西. 机器学习一般步骤 收集数据,将数据转化为适合分析的电子数据 探索和准备数据,机器学习中许多时间花费在数据探索中,它要学习更多的数据信息,识别它们的微小差异 基于数据训练模型,根据你要学习什么的设想,选择你要使用的一种或多种算法 评价模型的性能,需要依据一定的检验标准 改进模型的性能,有…
数据导入 以下R包主要用于数据导入和保存数据 feather:一种快速,轻量级的文件格式.在R和python上都可使用readr:实现表格数据的快速导入.中文介绍可参考这里readxl:读取Microsoft Excel电子表格数据openxlsx:读取Microsoft Excel电子表格数据googlesheets:读取google电子表格数据haven:读取SAS,SPSS和Stata统计软件格式的数据httr:从网站开放的API中读取数据rvest:网页数据抓取包xml2:读取HTML和…
前言:近段时间学习R语言用到最多的数据格式就是data.frame,现对data.frame常用操作进行总结,其中函数大部分来自dplyr包,该包由Hadley Wickham所作,主要用于数据的清洗和整理. 一.创建 data.frame创建较为容易,调用data.frame函数即可.本文创建一个关于学生成绩的数据框,接下来大部分操作都对该数据框进行,其中学生成绩随机产生 > library(dplyr) #导入dplyr包 > options(digits = 0) #保留整数 >…
R语言入门级实例——用igragh包分析社群 引入—— 本文的主要目的是初步实现R的igraph包的基础功能,包括绘制关系网络图(social relationship).利用算法进行社群发现(community detecting).对于R语言零基础的同学非常友好.以下R代码中如有含义不清的,建议尝试先在R编辑器中输入?xxx()进行查询(xxx是函数或语句名).此外,stackflow论坛也帮博主小白看懂了不少报错信息. 主要参考资料为<R语言与网站分析>[李明著][机械工业出版社][20…
Basic包是R语言预装的开发包,包含了常用的数据处理函数,可以对数据进行简单地清理和转换,也可以在使用其他转换函数之前,对数据进行预处理,必须熟练掌握常用的数据处理函数,本文分享在数据处理时,经常使用的基础函数. 一,合并向量 函数append用于修改合并向量,可以把两个向量合并为一个: append(x, values, after = length(x)) 例如:从一个向量的指定位置处,插入另一个向量: > append(:, :, after = ) [] 二,匹配函数 匹配函数(mat…
欢迎批评指正! 主成分分析(principal component analysis,PCA) 一.几何的角度理解PCA -- 举例:将原来的三维空间投影到方差最大且线性无关的两个方向(二维空间). 二.数学推导的角度为 -- 将原矩阵进行单位正交基变换. 且听我慢慢展开. 关于第一句话,给个图直观理解,请问,下面的三维空间中的一条鱼,在二维平面时怎么能更直观的看出,这是一条鱼? 很明显,第一种情况更直观,为什么呢? 这就是将原矩阵(三维空间)投影到了信息量最大的两个维度上(二维平面),这就是P…
R语言扩展包dplyr——数据清洗和整理 标签: 数据R语言数据清洗数据整理 2015-01-22 18:04 7357人阅读 评论(0) 收藏 举报  分类: R Programming(11)  版权声明:本文为博主原创文章,未经博主允许不得转载. 该包主要用于数据清洗和整理,coursera课程链接:Getting and Cleaning Data 也可以载入swirl包,加载课Getting and Cleaning Data跟着学习. 如下: library(swirl) insta…
R语言常用函数 基本 一.数据管理vector:向量 numeric:数值型向量 logical:逻辑型向量character:字符型向量 list:列表 data.frame:数据框c:连接为向量或列表 length:求长度 subset:求子集seq,from:to,sequence:等差序列rep:重复 NA:缺失值 NULL:空对象sort,order,unique,rev:排序unlist:展平列表attr,attributes:对象属性mode,typeof:对象存储模式与类型nam…
常用连续型分布介绍及R语言实现 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器.随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长.现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言. 要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领…
R语言是一门非常方便的数据分析语言,它内置了许多处理矩阵的方法.下面列出一些常用的矩阵操作方法示例. 矩阵的生成 > mat <- matrix(:, ncol = , nrow = , byrow=TRUE, dimnames=list(c(paste(:, sep = :, sep = ".")))) > mat y. y. y. y. x. x. x. x. 16# 矩阵的行列名还可以使用rownames或者colnames进行修改 > rownames(…
R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里主要介绍在基因组数据分析中可能会用到的函数. fread 做基因组数据分析时,常常需要读入处理大文件,这个时候我们就可以舍弃read.ta…
在R语言进行数据分析时,经常需要找不同组间的相同和不同,那你应该掌握如下几个函数,让你事半功倍. 交集intersect两个向量的交集,集合可以是数字.字符串等 # 两个数值向量取交集intersect(x=1:4, y = 2:6)# [1] 2 3 4 # 两个字符向量取交集intersect(x=letters[1:4], y = letters[2:6])# [1] "b" "c" "d" # 混合向量intersect(x=c(&quo…
上节我们简单介绍了Dataframe的定义,这节我们具体来看一下Dataframe的操作 首先,数据框的创建函数为 data.frame( ),参考R语言的帮助文档,我们来了解一下data.frame( )的具体用法: Usage data.frame(..., row.names = NULL, check.rows = FALSE, check.names = TRUE, fix.empty.names = TRUE, stringsAsFactors = default.stringsAs…
基本操作 读入csv数据 data <- read.csv("D:/Project/180414/data.csv", header = TRUE) 写出csv数据 write.csv(data,file="D:/Project/180414/data1.csv") 安装包调用R语言包 install.packages("psych")#安装包 library("psych")#调用包 数据框 创建数据框 schools…
> ####################5.2 > X<-c(159, 280, 101, 212, 224, 379, 179, 264, + 222, 362, 168, 250, 149, 260, 485, 170) > t.test(X,alternative='greater',mu=225,conf.level = 0.95)#单边检验 One Sample t-test data: X t = 0.66852, df = 15, p-value = 0.257…
老师简介: Gino老师,即将步入不惑之年,早年获得名校数学与应用数学专业学士和统计学专业硕士,有海外学习和工作的经历,近二十年来一直进行着数据分析的理论和实践,数学.统计和计算机功底强悍. 曾在某一世界500强公司核心部门担任高级主管负责数据建模和分析工作,在实践中攻克统计建模和数据分析难题无数,数据处理与分析科学精准,在实际应用中取得良好的效果. Gino老师担任数据分析培训师多年,探索出一套以实例讲解带动统计原理理解和软件操作熟悉的方法,授课的学生能迅速理解统计原理并使用统计软件独立开展数…
[怪毛匠子整理] 1.下载 wget http://mirror.bjtu.edu.cn/cran/src/base/R-3/R-3.0.1.tar.gz 2.解压: tar -zxvf R-3.0.1.tar.gz cd R-3.0.1 3.安装 yum install readline-devel yum install libXt-devel ./configure 如果使用rJava需要加上 --enable-R-shlib ./configure  --enable-R-shlib -…
本文对应<R语言实战>第12章:重抽样与自助法 之前学习的基本统计分析.回归分析.方差分析,是假定观测数据抽样自正态分布或者其他性质较好的理论分布,进而进行的假设检验和总体参数的置信区间估计等方法.但在许多实际情况中统计假设并不一定满足,比如抽样于未知或混合分布.样本量过小.存在离群点.基于理论分布设计合适的统计检验过于复杂且数学上难以处理等情况,这时基于随机化和重抽样的统计方法就可派上用场. 本章探究两种应用广泛的依据随机化思想的统计方法:置换检验和自助法. ================…
什么是分位数回归 分位数回归(Quantile Regression)是计量经济学的研究前沿方向之一,它利用解释变量的多个分位数(例如四分位.十分位.百分位等)来得到被解释变量的条件分布的相应的分位数方程. 与传统的OLS只得到均值方程相比,分位数回归可以更详细地描述变量的统计分布.它是给定回归变量X,估计响应变量Y条件分位数的一个基本方法:它不仅可以度量回归变量在分布中心的影响,而且还可以度量在分布上尾和下尾的影响,因此较之经典的最小二乘回归具有独特的优势.众所周知,经典的最小二乘回归是针对因…