DIN】的更多相关文章

背景 经典MLP不能充分利用结构化数据,本文提出的DIN可以(1)使用兴趣分布代表用户多样化的兴趣(不同用户对不同商品有兴趣)(2)与attention机制一样,根据ad局部激活用户兴趣相关的兴趣(用户有很多兴趣,最后导致购买的是小部分兴趣,attention机制就是保留并激活这部分兴趣).   评价指标 按照user聚合样本,累加每个user组的sum(shows*AUC)/sum(shows).paper说实验表明GAUC比AUC准确稳定.   DIN算法         左边是基础模型,也…
参考: https://zhuanlan.zhihu.com/p/51623339 https://arxiv.org/abs/1706.06978 注意力机制顾名思义,就是模型在预测的时候,对用户不同行为的注意力是不一样的,“相关”的行为历史看重一些,“不相关”的历史甚至可以忽略.那么这样的思想反应到模型中也是直观的. 如果按照之前的做法,我们会一碗水端平的考虑所有行为记录的影响,对应到模型中就是我们会用一个average pooling层把用户交互过的所有商品的embedding vecto…

DIN

1. DIN(Deep Interest Network)优点 使用用户兴趣分布来表示用户多种多样的兴趣爱好. 使用Attention机制来实现Local Activation,局部激活相关的历史兴趣信息,与当前候选Ad相关性越高的历史行为,会获得更高的Attention Score. 针对模型训练,提出Dice激活函数,自适应正则,显著提升模型性能与收敛速度. 2. 整体网络结构 利用Goods与Ads之间的相关性,引入注意力机制.DIN模型的输入分为2个部分:用户特征和广告(商品)特征.用户…
[论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 0x02 解读思路 2.1 Memorization 和 Generalization 2.1.1 Memorization 2.1.2 Generalization 2.2 发展脉络 0x03 DNN 3.1 深度模型思路 3.2 DNN模型 3.3 工作机制 3.4 模型特点 0x04 DIN…
[阿里DIN] 深度兴趣网络源码分析 之 如何建模用户序列 目录 [阿里DIN] 深度兴趣网络源码分析 之 如何建模用户序列 0x00 摘要 0x01 DIN 需要什么数据 0x02 如何产生数据 2.1 基础数据 2.2 处理数据 2.2.1 生成元数据 2.2.2 构建样本列表 2.2.3 分离样本 2.2.4 生成行为序列 2.2.5 分成训练集和测试集 2.2.6 生成数据字典 0x03 如何使用数据 3.1 训练数据 3.2 迭代读入 3.2.1 初始化 3.2.2 迭代读取 3.2.…
[阿里DIN] 深度兴趣网络源码分析 之 整体代码结构 目录 [阿里DIN] 深度兴趣网络源码分析 之 整体代码结构 0x00 摘要 0x01 文件简介 0x02 总体架构 0x03 总体代码 0x04 模型基类 4.1 基本逻辑 4.2 模块分析 4.2.1 构建变量 4.2.2 构建embedding 4.2.3 拼接embedding 0x05 Model_DIN 5.1 Attention机制 5.2 Attention实现 5.2.1 调用 5.2.2 mask的作用 Padding…
[阿里DIN]从论文源码学习 之 embedding_lookup 目录 [阿里DIN]从论文源码学习 之 embedding_lookup 0x00 摘要 0x01 DIN代码 1.1 Embedding概念 1.2 在DIN中的使用 1.3 问题 0x02 相关概念 2.1 one-hot编码 2.2 转换 2.3 Embedding层 2.3.1 意义 2.3.2 常规作用 2.3.3 如何生成 2.4 Embedding与深度学习推荐系统的结合 2.4.1 重要性 2.4.2 预训练方法…
[阿里DIN] 从论文源码学习 之 embedding层如何自动更新 目录 [阿里DIN] 从论文源码学习 之 embedding层如何自动更新 0x00 摘要 0x01 DIN源码 1.1 问题 1.2 答案 0x02 原理 2.1 随机梯度下降SGD 2.2 反向传播 2.3 自动求导 0x03 优化器 3.1 Optimizer基类 3.2 反向传播过程 3.2.1 compute_gradients 3.2.2 gradients 3.2.3 apply_gradients 3.3 Ad…
深度学习在推荐系统.CTR预估领域已经有了广泛应用,如wide&deep.deepFM模型等,今天介绍一下由阿里算法团队提出的深度兴趣网络DIN和DIEN两种模型 paper DIN:https://arxiv.org/abs/1706.06978 DIEN:https://arxiv.org/abs/1809.03672 code DIN:https://github.com/zhougr1993/DeepInterestNetwork DIEN:https://github.com/moun…
[阿里DIN] 从模型源码梳理TensorFlow的乘法相关概念 目录 [阿里DIN] 从模型源码梳理TensorFlow的乘法相关概念 0x00 摘要 0x01 矩阵乘积 1.1 matmul product(一般矩阵乘积) 1.2 Hadamard product(哈达玛积) 1.3 tf.matmul 1.4 tf.multiply 1.5 重载 1.6 DIN使用 0x02 多维矩阵相乘 2.1 TensorFlow实现 2.2 DIN使用 0x03 tile 3.1 tile函数 3.…