不多说,直接上干货! 常见的推荐算法 1.基于关系规则的推荐 2.基于内容的推荐 3.人口统计式的推荐 4.协调过滤式的推荐 (广泛采用) 协调过滤的概念 在现今的推荐技术和算法中,最被大家广泛认可和采用的就是基于协同过滤的推荐方法. 协同过滤是利用集体智慧的一个典型方法.要理解什么是协同过滤 (Collaborative Filtering, 简称 CF),首先想一个简单的问题,如果你现在想看个电影,但你不知道具体看哪部,你会怎么做?大部分的人会问问周围的朋友,看看最近有什么好看的电影推荐,而…
不多说,直接上干货! Distributed  matrix : 分布式矩阵 一般能采用分布式矩阵,说明这数据存储下来,量还是有一定的.在Spark Mllib里,提供了四种分布式矩阵存储形式,均由支持长整形的行列数和双精度浮点型的数据内容组成. 包括行矩阵.带有行索引的行矩阵.坐标矩阵和块矩阵. 依据你数据的不同的特点,你可以选择不同类型的数据. (1).行矩阵: 以行为基本方向的矩阵存储格式,列的作用相对较少. 理解记忆,行矩阵是一个巨大的特征向量的集合 每一行就是一个具有相同格式的向量数据…
不多说,直接上干货! Spark Mllib里决策树二元分类使用.areaUnderROC方法计算出以AUC来评估模型的准确率和决策树多元分类使用.precision方法以precision来评估模型的准确率(图文详解) Spark Mllib里决策树回归分析使用.rootMeanSquaredError方法计算出以RMSE来评估模型的准确率   具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第18章 决策树回归分类Bike Sharing数据集…
不多说,直接上干货! 在决策树二元或决策树多元分类参数设置中: 使用DecisionTree.trainClassifier   见 Spark Mllib里如何对决策树二元分类和决策树多元分类的分类数目numClasses控制(图文详解) val model = DecisionTree.trainClassifier(trainData, , Map[Int, Int](), impurity, maxDepth, maxBins) 在决策树回归分析参数设置中: 使用DecisionTree…
不多说,直接上干货! Spark Mllib里决策树二元分类使用.areaUnderROC方法计算出以AUC来评估模型的准确率 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第13章 使用决策树二元分类算法来预测分类StumbleUpon数据集 Spark Mllib里决策树多元分类使用.precision方法以precision来评估模型的准确率 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第17章 决策树多元分类UCI Covertype…
不多说,直接上干货! Local matrix:本地矩阵 数组Array(1,2,3,4,5,6)被重组成一个新的2行3列的矩阵. testMatrix.scala package zhouls.bigdata.chapter4 import org.apache.spark.mllib.linalg.{Matrix, Matrices} object testMatrix { def main(args: Array[String]) { val mx = Matrices.dense(2,…
不多说,直接上干货! Labeled point: 向量标签 向量标签用于对Spark Mllib中机器学习算法的不同值做标记. 例如分类问题中,可以将不同的数据集分成若干份,以整数0.1.2,....进行标记,即我们程序开发者可以根据自己业务需要对数据进行标记. 向量标签和向量是一起的,简单来说,可以理解为一个向量对应的一个特殊值,这个值的具体内容可以由用户指定,比如你开发了一个算法A,这个算法对每个向量处理之后会得出一个特殊的标记值p,你就可以把p作为向量标签.同样的,更为直观的话,你可以把…
不多说,直接上干货! Local  vector : 本地向量集 由两类构成:稀疏型数据集(spares)和密集型数据集(dense) (1).密集型数据集 例如一个向量数据(9,5,2,7),可以设定为(9,5,2,7)进行存储,数据集被作为一个集合的形式整体存储. (2).稀疏型数据集 例如一个向量数据(9,5,2,7),可以按向量的大小存储为(4,Array(0,1,2,3),Array(9,5,2,7))  testVector.scala package zhouls.bigdata.…
不多说,直接上干货! 常见的推荐算法 1.基于关系规则的推荐 2.基于内容的推荐 3.人口统计式的推荐 4.协调过滤式的推荐 协调过滤算法,是一种基于群体用户或者物品的典型推荐算法,也是目前常用的推荐算法中最常用和最经典的算法. 协调过滤算法主要有两种: 用户对物品:  考查具有相同爱好的用户对相同物品的评分标准进行计算: 物品对用户:  考查具有相同物质的物品从而推荐给选择了某件物品的用户. 相似度度量(基于欧几里得距离的相似度计算和基于余弦角度的相似度计算) (1).基于欧几里得距离的相似度…
不多说,直接上干货! 具体,见 Spark Mllib机器学习(算法.源码及实战详解)的第2章 Spark数据操作…