LOJ 6485 LJJ学多项式】的更多相关文章

前言 蒟蒻代码惨遭卡常,根本跑不过 前置芝士--单位根反演 单位根有这样的性质: \[ \frac{1}{n}\sum_{i=0}^{n-1}\omega_{n}^{ki}=\left[n|k\right] \] 所以可以得出单位根反演的式子 如果有\(f(x)=\sum_{i=0}a_ix^i\),就可以推出 \[ \sum_{i=0}^na_i\left[d|i\right]=\frac{1}{d}\sum_{p=0}^{d-1}f(\omega_d^p) \] 证明可以把上面的式子代入,然…
$ \color{#0066ff}{ 题目描述 }$ LJJ 学完了二项式定理,发现这太简单了,于是他将二项式定理等号右边的式子修改了一下,代入了一定的值,并算出了答案. 但人口算毕竟会失误,他请来了你,让你求出这个答案来验证一下. 一共有 \(T\) 组数据,每组数据如下: 输入以下变量的值:\(n, s , a_0 , a_1 , a_2 , a_3\),求以下式子的值: \(\begin{aligned}\Large \left[ \sum_{i=0}^n \left( {n\choose…
QwQ LOJ #6485 题意 求题面中那个算式 题解 墙上暴利 设$ f(x)=(sx+1)^n$ 假设求出了生成函数$ f$的各项系数显然可以算出答案 因为模$ 4$的缘故只要对于每个余数算出次数模4为该余数的系数和即可 求系数和强上单位根反演即可 求模4余1相当于求模4余0之后平移一位即乘上$ x^{-1}$ 好像讲的非常不清楚啊... 代码 #include<ctime> #include<cmath> #include<cstdio> #include<…
题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i-k)] \) 然后就是套路即可. #include<cstdio> #include<cstring> #include<algorithm> #define ll long long using namespace std; ll rdn() { ll ret=;;ch…
题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\limits_{j=0}^{n} C_{n}^{j} * s^{j} * [4|(j-i)] \) 然后把 \( [4|(j-i)] \) 单位根反演,得到 \( \sum\limits_{i=0}^{3} a_{i} \sum\limits_{j=0}^{n} C_{n}^{j} * s^{j} * \…
题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\(998244353\)意义下的\(\omega_k^1=g^{P-1\over k}\) 据说这玩意儿在\(NTT\)的证明里有?然而我那时候光顾着背板子了 所以这个单位根反演简称小单的玩意儿能干嘛呢 然后我们惊奇的发现小单可以让我们快速求一个数列里某个数倍数项的和 \[ \begin{align…
新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s".in","r",stdin) using namespace std; const ll mod=998244353; inline ll qpow(ll x,ll y) { ll tmp=1; x=x%mod; y=(y%(mod-1)+mod-1)%(mod-1); for(…
也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left(\sum ^{n}_{i=0}\begin{pmatrix} n \\ i \end{pmatrix}\cdot s^{i}\cdot a_{i\ mod\ 4}\right)mod\ 998244353\end{aligned}\) \(\mathcal{Solution}\) 这道题要用单位根…
[LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&=\frac{1}{4}a_0\sum_{i=0}^n [4|i]{n\choose i}s^i\\ &=\frac{1}{4}a_0\sum_{i=0}^n{n\choose i}s^i\sum_{j=0}^3 (\omega_4^{j})^i\\ &=\frac{1}{4}a_0\su…
LJJ 学二项式定理 题意 \(T\)组数据,每组给定\(n,s,a_0,a_1,a_2,a_3\),求 \[ \sum_{i=0}^n \binom{n}{i}s^ia_{i\bmod 4} \] 对\(998244353\)取模 范围 \(1\le T\le 10^5,1\le n\le 10^{18},1\le s,a_0,a_1,a_2,a_3\le 10^8\) 单位根反演有个套路 \[ [k\equiv l \ (\text{ mod } n)\ ]=\frac{1}{n}\sum_…
\(\mathcal{Description}\)   Link.   给定 \(n,s,a_0,a_1,a_2,a_3\),求: \[\sum_{i=0}^n\binom{n}is^ia_{i\bmod4}\bmod998244353 \]   多测,数据组数 \(\le10^5\),\(n\le10^{18}\),其余输入 \(\le10^8\). \(\mathcal{Solution}\)   单位根反演板题.记一个函数 \(f\) 有: \[\begin{aligned} f(x)&=…
题目 由于看到正解的单位根反演过于复杂 (也就是看不懂) 所以自己构造了一个算法,理论上这个算法应该还有成长的空间(可以变得普适性更强) 不知道和单位根反演有没有一样,就发表出来了 反正转载前记得要联系本人,联系方式参考 index [分析] 题目所求为 \(\displaystyle Ans=[\sum_{k=0}^nC_n^ks^ka_{(k\mod 4)}]\mod 998244353\) 为避免混淆,本文中(除代码)所有 \(i\) 均表明虚数的单位,即 \(i^2=-1\),而代码中的…
原题链接 多项式全家桶!快乐!(好像少个除法,不过有除法好像不太快乐) (说真的这是我第一次写exp和开根...水平不行.. 从最基础要实现的操作开始吧.. 多项式取模\(x^n\) 这个..很简单了,把大于等于n指数的系数全改成0就好了 多项式加减法 按位加/减,复杂度\(O(n)\) 多项式求导数 这个的话,选修2-1了解一下? \((ax^{n})' = anx^{n - 1}\) 多项式求积分 同上 我们只要求一个多项式的导数是该多项式即可 列个方程可以发现 \(\int ax^{n}…
题目描述: loj 题解: 单位根反演. $[n|x]=\frac{1}{n} \sum _{i=0}^{n-1} (ω_n^x)^i$ 证明?显然啊,要么停在$(1,0)$要么转一圈. 所以说题目要求的是$\sum _{i=0}^{n} C(n,i) * s^i * a_{i\;mod\;4}$ 把$a$提前,变成$\sum_{k=0}^{3}a_k \sum _{i=0} ^{n} C(n,i) *s^i [4|i-k]$ 然后把上面单位根反演式子套进去.后面变成$\sum _{i=0} ^…
\(\mathcal{Description}\)   Link.   给定 \(n\) 次多项式 \(F(x)\),在模 \(998244353\) 意义下求 \[G(x)\equiv\left\{\left[1+\ln\left(2+F(x)-F(0)-\exp \int \frac{1}{\sqrt{F(t)}}\text dt\right)\right]^k\right\}'\pmod{x^n} \] 其中保证 \(F(0)\) 是模数的二次剩余,开根取模意义下较小常数项值.   \(n…
题意:求\(\sum_{i_1=1}^m\sum_{i_2=1}^m...\sum_{i_n=1}^mgcd(i_1,i_2,...i_n)\) 题解:\(\sum_{d=1}^md\sum_{i_1=1}^m...\sum_{i_n=1}^m[(i_1,...i_n)==d]\) \(=\sum_{d=1}^md\sum_{i_1=1}^{\lfloor \frac{m}{d} \rfloor}...\sum_{i_n=1}^{\lfloor \frac{m}{d} \rfloor}\sum_…
题意 题目链接 Sol 反演套路题? 不过最后一步还是挺妙的. 套路枚举\(d\),化简可以得到 \[\sum_{T = 1}^m (\frac{M}{T})^n \sum_{d \ | T} d \mu(\frac{T}{d})\] 后面的显然是狄利克雷卷积的形式,但是这里\(n \leqslant 10^{11}\)显然不能直接线性筛了 设\(F(n) = n, f(n) = \phi(n)\) 根据欧拉函数的性质,有\(F(n) = \sum_{d \ | n} f(d)\) 反演一下 \…
第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了--赛场上看出来是个单位根反演但不会,所以只好现学这东西了( 首先你得知道单位根是什么东西,对于 \(n\) 次方程 \(x^n-1=0(x\in\mathbb{C})\),在复数域上有 \(n\) 个根,其对应到复平面上就是单位圆的 \(n\) 等分点,我们将这些单位根从 \(x\) 轴正半轴开始顺时针依次…
数论ex 数学学得太差了补补知识点or复习 Miller-Rabin 和 Pollard Rho Miller-Rabin 前置知识: 费马小定理 \[ a^{p-1}\equiv 1\pmod p,p \ is \ prime \] 二次探测(mod奇素数下1的二次剩余) \[ x^2\equiv 1\pmod p\Rightarrow x=1 \ or \ p-1 \] 如果不是 \(\bmod\) 奇素数,二次剩余可能是更多的值 如果把费马小定理反过来用来检测一个数是否是素数,虽然是错的,…
我这种数学一窍不通的菜鸡终于开始学多项式全家桶了-- 必须要会的前置技能:FFT(不会?戳我:[知识总结]快速傅里叶变换(FFT)) 以下无特殊说明的情况下,多项式的长度指多项式最高次项的次数加\(1\) 一.NTT 跟FFT功能差不多,只是把复数域变成了模域(计算复数系数多项式相乘变成计算在模意义下整数系数多项式相乘).你看FFT里的单位圆是循环的,模一个质数也是循环的嘛qwq.\(n\)次单位根\(w_n\)怎么搞?看这里:[BZOJ3328]PYXFIB(数学)(内含相关证明.只看与原根和…
\(\mathcal{Preface}\)   单位根反演,顾名思义就是用单位根变换一类式子的形式.有关单位根的基本概念可见我的这篇博客. \(\mathcal{Formula}\)   单位根反演的公式很简单: \[[k|n]=\frac{1}k\sum_{i=0}^{k-1}\omega_k^{ni} \] \(\mathcal{Proof}\)   分类讨论: \(k|n\). 那么 \((\forall i)(\omega_k^{ni}=1)\),所以右侧为 \(\frac{1}k\su…
一道清真的数论题 LOJ #3058 Luogu P5293 题解 考虑$ n=1$的时候怎么做 设$ s$为转移的方案数 设答案多项式为$\sum\limits_{i=0}^L (sx)^i\binom{L}{i}=(sx+1)^L$ 答案相当于这个多项式模$ k$的各项系数的和 发现这和LJJ学二项式定理几乎一模一样 我上一题的题解 然而直接搞是$ k^2$的,无法直接通过本题 以下都用$ w$表示$ k$次单位根 设$ F_i$为次数模$ k$为$ i$的项的系数和 单位根反演一下得到$F…
大米饼正式退役了,OI给我带来很多东西 我会的数学知识基本都在下面了 博客园的评论区问题如果我看到了应该是会尽力回答的... 这也是我作为一个OIer最后一次讲课的讲稿 20190731 多项式乘法 FFT 基本概念 1.多项式的两种表达(拉格朗日插值法) 多项式:\(A(x) = \sum_{i=0}^{n-1}a_ix^i\),最高项次数为\(n-1\),次数界为\(n\) \((a_0,\cdots,a_{n-1})\)为多项式的系数表达, \((x_0,y_0),\cdots,(x_{n…
Description 我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树.考虑一个含有n个互异正整数的序列c[1],c[2],...,c[n].如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合{c[1],c[2],...,c[n]}中,我们的小朋友就会将其称作神犇的.并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和.给出一个整数m,你能对于任意的s(1<=s<=m)计算出权值为s的神犇二叉树的个数吗?请参照样例以更好的理解什么样的两棵二叉树会被视为不同的.我们只需要知道答案关于9…
一轮 现在才知道大家都写了2333,现在补上不晚吧. Day 0 跟Crossing打了一路的王者,丝毫没有困意.颁奖仪式看到rank 1 又是xj的zyz,QWQ.被冯缘的热情四射的演讲给吓到了.然后被初中老师怒D了一顿,要仔细点??? 嘿嘿,据说老师不管初三,那就开颓游戏(斜眼笑),然后跟着Siyuan.Crossing.Destiny.Rarely去吃火锅,边颓边吃,还不知道什么时候会熟(被店员d了) 晚上颓到十二点左右才睡没想到这是最早的一天 Day 1 占据了一个极为有利的位置,有电有…
Day 1 3月有31天废话 今天先颓过了就只剩30天了 初步计划 每天一道字符串/数据结构题 图论学习 根据<若干图论模型探讨>(lyd)复习 二分图与网络流学习 <算法竞赛进阶指南>剩余std 虚树学习 动态规划学习 DP优化学习 特殊DP学习(排名不分先后):插头DP.计数DP.数位DP.概率期望DP.基环树DP.动态DP Day 2 吐槽一句今天的数据结构题P2824 [HEOI2016/TJOI2016]排序-- 数据是真水,纯暴力拿80 然后就不想想正解了......…
前言 学多项式怎么能错过\(FWT\)呢,然而这真是个毒瘤的东西,蒟蒻就只会背公式了\(\%>\_<\%\) 或卷积 \[\begin{aligned}\\ tf(A) = (tf(A_0), tf(A_1) + tf(A_0))\\ utf(A) = (utf(A), utf(A_1) - utf(A_0))\\ \end{aligned}\] 与卷积 \[\begin{aligned}\\ tf(A) = (tf(A_0) + tf(A_1), tf(A_1))\\ utf(A) = (u…
如果写过 LJJ 学二项式那道题的话这道题就不难了. #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; int K,bu[10000],G; ll Mod,N; struct M { ll a…
loj嘟嘟嘟 学完模拟退火后开始搞这道题,搞了一下午最终搞到了80分,剩下的实在不知道怎么办了-- 首先肯定是把有交点的线段划分到一个集合,然后对每一个集合求一遍凸包. 然后两两合并,如果新的凸包的周长更小,那必定合并. 但有可能三个或以上合并才更优,所以上述算法肯定不行. 这时候就要模拟退火了. 每次随机合并两个,如果更优,就合并:否则有概率合并.然后我在每一次降温之前又暴力的全扫一遍尝试两两合并. 模拟退火跑到2.9秒,我又写了个一个乱搞算法,借鉴了当时rk1的写法,每次随机两个合并,直到剩…
description 给定长度为\(n-1\)的数组\(g[1],g[2],..,g[n-1]\),求\(f[0],f[1],..,f[n-1]\),其中 \[f[i]=\sum_{j=1}^if[i-j]g[j]\] 边界为 \(f[0]=1\).答案模\(998244353\). analysis 一道分治\(NTT\)板题 经历过城市规划那题的洗礼之后这题变得微不足道 考虑\(CDQ\)分治,求出\([l,mid]\)对\([mid+r]\)的贡献 把\(f[l,mid]\)拉出来,与\…