洛谷题面传送门 hot tea. 首先注意到这个 \(\text{lcm}\) 特别棘手,并且这里的 \(k\) 大得离谱,我们也没办法直接枚举每个质因子的贡献来计算答案.不过考虑到如果我们把这里的 \(\text{lcm}\) 改为 \(\gcd\) 那么一遍莫比乌斯反演即可搞定,因此考虑将这里的 \(\text{lcm}\) 与 \(\gcd\) 联系在一起.那么什么能将这两个东西联系在一起呢?Min-Max 容斥,具体来说,考虑式子 \[\text{lcm}(S)=\prod\limits…
小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 nn个结点和 n-1n−1条边的树, 每条边连接两个结点,且任意两个结点存在一条路径互相可达.树上结点编号为从11到nn的连续正整数. 现在有mm个玩家,第ii个玩家的起点为 S_iS i​ ,终点为 T_iT i​ .每天打卡任务开始时,所有玩家在第00秒同时从自己的起点出发, 以每秒跑一条边的速度, 不间断地…
洛谷题面传送门 看到图计数的题就条件反射地认为是不可做题并点开了题解--实际上这题以我现在的水平还是有可能能独立解决的( 首先连通这个条件有点棘手,我们尝试把它去掉.考虑这题的套路,我们设 \(f_n\) 表示 \(n\) 个点的有标号 DAG 个数,\(g_n\) 表示 \(n\) 个点的有标号且弱联通的 DAG 个数,那么根据 \(\exp\) 式子的计算方式我们可以列出 \(f,g\) 生成函数之间的 exp 关系,又因为这题带标号,所以有: Trick 1. 对于有标号图连通图计数问题,…
题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Queries加强版,多了下界. 设$f(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]$ 根据容斥可以显然的得出Ans=f(b,d)-f(b,c-1)-f(a-1,d)+f(a-1,c-1). 对于f(n,m)的求解: $f(n,m)=\sum_{i=1}^{n}\…
传送门 我们把每一条路径拆成$u->lca$和$lca->v$的路径 先考虑$u->lca$,如果这条路径会对路径上的某一个点产生贡献,那么满足$dep[u]-dep[x]=w[x],dep[u]=dep[x]+w[x]$,注意到$dep[x]+w[x]$是一个定值,所以我们只要去找它的子树里有多少个点的$dep$等于$dep[x]+w[x]$就可以了,这个可以直接开一个桶.然而如果点$x$在$lca$的上面,这一条路径是不会对他产生贡献的,那么我们就得在$lca$处把这一条路径的贡献给…
题意 题目链接 Sol 一步一步的来考虑 \(25 \%\):直接\(O(nm)\)的暴力 链的情况:维护两个差分数组,分别表示从左向右和从右向左的贡献, \(S_i = 1\):统计每个点的子树内有多少起点即可 \(T_i = 1\):同样还是差分的思想,由于每个点 能对其产生的点的深度是相同的(假设为\(x\)),那么访问该点时记录下\(dep[x]\)的数量,将结束时\(dep[x]\)的数量与其做差即可 满分做法和上面类似,我们考虑把每个点的贡献都转换到子树内统计 对于每次询问,拆为\(…
正解:树上差分 解题报告: 传送门$QwQ$! 这题还挺妙的,,,我想了半天才会$kk$ 首先对一条链$S-T$,考虑先将它拆成$S-LCA$和$LCA-T$,分别做.因为总体上来说差不多接下来我就只港$S-LCA$的做法了$QwQ$ 考虑对于一个观察点$j$,若要观察到玩家$i$,则有$dep_j+w_j=dep_i$.发现现在就只用统计$j$的子树内所有起点深度等于$dep_j+w_j$的就行. 显然考虑树上差分呗.就开个桶记$dep_i$,对每条路径在$S$处给$dep_S$+1,到$LC…
https://www.luogu.org/problemnew/show/P1600 (仅做记录) 自己的假方法: 每一次跑从a到b:设l=lca(a,b)对于以下产生贡献: a到l的链上所有的点(x)满足dep[x]+w[x]==dep[a] l到b的链上(不含l)所有的点(x)满足dep[x]-dep[l]+dep[a]-dep[l]==w[x]即dep[x]-w[x]==2*dep[l]-dep[a] 于是每一个点记两个map<int,int>,其中键值对(p,q)表示 “从该点到根的…
天天放毒... 首先介绍一个树上差分. 每次进入的时候记录贡献,跟出来的时候的差值就是子树贡献. 然后就可以做了. 发现考虑每个人的贡献有困难. 于是考虑每个观察员的答案. 把路径拆成两条,以lca分开.x -> z -> y,完全分成A,B两部分. 那么A:d[x] = w[z] + d[z];B:len - d[y] + N = w[z] - d[z] + N; 这里+ N是为了防止负数. 然后发现右边只跟z有关,这里的z可以是路径上任一点. 那么对于每个人,把需要树上差分统计的左边数值用…
题目:https://www.luogu.org/problemnew/show/P1600 看博客:https://blog.csdn.net/clove_unique/article/details/53427248 思路好神啊... 树上差分是好东西. 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std;…