首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
用basicTrendline画一元线性回归直线的置信区间
】的更多相关文章
用basicTrendline画一元线性回归直线的置信区间
感慨统计学都还给老师了..恶补! R安装包的时候貌似需要用管理员权限启动,否则安装不了,国内镜像卡得渣渣,还是国外镜像真香~选择hongkong就好了. install.packages("basicTrendline") library(basicTrendline) x1<-c(XXXXXXX) y1<-c(XXXXXXX) trendline(x1, y1, model="line2P", ePos.x = "topleft",…
回归分析法&一元线性回归操作和解释
用Excel做回归分析的详细步骤 一.什么是回归分析法 "回归分析"是解析"注目变量"和"因于变量"并明确两者关系的统计方法.此时,我们把因子变量称为"说明变量",把注目变量称为"目标变量址(被说明变量)".清楚了回归分析的目的后,下面我们以回归分析预测法的步骤来说明什么是回归分析法: 回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理.只有当变量与因变量确实存在某种关…
R语言解读一元线性回归模型
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体重,普遍来看越高的人体重也越重.还有一些可能存在相关性的事件,比如知识水平越高的人,收入水平越高:市场化的国家经济越好,则货币越强势,反而全球经济危机,黄金等避险资产越走强. 如果我们要研究这些事件,找到不同变量之间的关系,我们就会用到回归分析.一元线性回归分析是处理两个变量之间关系的最简单模型,是…
一元线性回归模型与最小二乘法及其C++实现
原文:http://blog.csdn.net/qll125596718/article/details/8248249 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归.回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析.对于二维空间线性是一条直线:对于三维空间线性是一…
R语言 一元线性回归
#一元线性回归的基本步骤#1.载入数据 给出散点图 x<-c(0.10,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.20,0.21,0.23) y<-c(42.0,43.5,45.0,45.5,45.0,47.5,49.0,53.0,50.0,55.0,55.0,60.0) plot(x,y) #2.线性回归 得到回归方程 并查看回归结果 CG<-lm(y~x) CG summary(CG) #所得回归方程为y=130.83x+28.49#3.线…
machine learning 之 导论 一元线性回归
整理自Andrew Ng 的 machine learnig 课程 week1. 目录: 什么是机器学习 监督学习 非监督学习 一元线性回归 模型表示 损失函数 梯度下降算法 1.什么是机器学习 Arthur Samuel不是一个playing checker的高手,但是他编了一个程序,每天和这个程序playing checker,后来这个程序最后变得特别厉害,可以赢很多很厉害的人了.所以Arthur Samuel就给机器学习下了一个比较old,不太正式的定义: " the field of s…
平面上画n条直线,最多能将平面分成多少部分?
转自:http://blog.csdn.net/cywosp/article/details/6724522 在一个平面上画1999条直线,最多能将这一平面划分成多少个部分? 没有直线时有一个空间:(1) 1条直线时,这条这些可以将这个空间分成两个:(1+1) 2条直线时,第二条直线可以和第一条直线相交,这样第二条直线可以将两个空间分成四个:(1+1+2) .... 注意到画每条直线时能增加多少个空间,取决于此直线从多少个空间中通过. 而从多少个空间中通过,取决于和多少条直线相交. 例如,在画第…
R语言做一元线性回归
只有两个变量,做相关性分析,先来个一元线性回归吧 因为未处理的x,y相关性不显著,于是用了ln(1+x)函数做了个处理(发现大家喜欢用ln,log,lg,指数函数做处理),处理完以后貌似就显著了..虽然R方也比较小 model <- lm(y1~1+x1) summary(model) plot(x1,y1,main=" ",xlab="ln(H+1)",ylab="ln(G+1)",cex.main=1) abline(model,col…
Python实现——一元线性回归(梯度下降法)
2019/3/25 一元线性回归--梯度下降/最小二乘法_又名:一两位小数点的悲剧_ 感觉这个才是真正的重头戏,毕竟前两者都是更倾向于直接使用公式,而不是让计算机一步步去接近真相,而这个梯度下降就不一样了,计算机虽然还是跟从现有语句/公式,但是在不断尝试中一步步接近目的地. 简单来说,梯度下降的目的在我看来还是要到达两系数的偏导数函数值为零的取值,因此,我们会从"任意一点"开始不断接近,由于根据之前最小二乘法的推导,可以说方差的公式应该算一个二次函数...?总之,这么理解的话就算只用中…
梯度下降法及一元线性回归的python实现
梯度下降法及一元线性回归的python实现 一.梯度下降法形象解释 设想我们处在一座山的半山腰的位置,现在我们需要找到一条最快的下山路径,请问应该怎么走?根据生活经验,我们会用一种十分贪心的策略,即在现在所处的位置上找到一个能够保证我们下山最快的方向,然后向着该方向行走:每到一个新位置,重复地应用上述贪心策略,我们就可以顺利到达山底了.其实梯度下降法的运行过程和上述下山的例子没有什么区别,不同的是我们人类可以凭借我们的感官直觉,根据所处的位置来选择最佳的行走方向,而梯度下降法所依据的是严格的数学…