Grigory loves strings. Recently he found a metal strip on a loft. The strip had length n and consisted of letters "V" and "K". Unfortunately, rust has eaten some of the letters so that it's now impossible to understand which letter was…
传送门 如果没有碍事的?的话,判定字符串的循环节直接用KMP的失配数组就可以搞定.现在有了碍事的?,我们就需要考虑更通用的算法. 考虑KMP失配数组判定字符串循环节的本质,发现判定\(k\)是否为字符串的循环节等价于判定字符串在右移\(k\)位后能否和原字符串匹配(只考虑二者重叠的部分). 我们不妨先把?直接看成一个可以匹配任何字符的通配符,而解决带通配符的字符串匹配问题的一个算法就是FFT. (以下默认下标为\(0\)~\(n-1\)) 设字符串为\(s\),因为字符集只有\(2\),不妨直接…
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/例题与常用套路[入门] 前置技能 对复数以及复平面有一定的了解 对数论要求了解:逆元,原根,中国剩余定理 对分治有充足的认识 对多项式有一定的认识,并会写 $O(n^2)$ 的高精度乘法 本文概要 多项式定义及基本卷积形式 $Karatsuba$ 乘法 多项式的系数表示与点值表示,以及拉格朗日插值法…
这可能是我第五次学FFT了--菜哭qwq 先给出一些个人认为非常优秀的参考资料: 一小时学会快速傅里叶变换(Fast Fourier Transform) - 知乎 小学生都能看懂的FFT!!! - 胡小兔 - 博客园 快速傅里叶变换(FFT)用于计算两个\(n\)次多项式相乘,能把复杂度从朴素的\(O(n^2)\)优化到\(O(nlog_2n)\).一个常见的应用是计算大整数相乘. 本文中所有多项式默认\(x\)为变量,其他字母均为常数.所有角均为弧度制. 一.多项式的两种表示方法 我们平时常…
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 写在前面 一些约定 循环卷积 DFT卷积的本质 Bluestein's Algorithm 例题 分治FFT 例题 FFT的弱常数优化 复杂算式中减少FFT次数 例题 利用循环卷积 小范围暴力 例题 快速幂乘法次数的优化 FFT的强常数优化 DF…
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\mathcal{F}[f(t)]=\int\limits_{-\infty}^\infty f(t)e^{-iwt}dt \] 傅里叶逆变换是将频率域上的F(w)变成时间域上的函数f(t),一般称\(f(t)\)为原函数,称\(F(w)\)为象函数.原函数和象函数构成一个傅里叶变换对. \[ f(t)…
扯 去北京学习的时候才系统的学习了一下卷积,当时整理了这个笔记的大部分.后来就一直放着忘了写完.直到今天都腊月二十八了,才想起来还有个FFT的笔记没整完呢.整理完这个我就假装今年的任务全都over了吧. 更改了一些以前不大正确的地方,又添加了一些推导,证明实在不会. 有一些公式,但个人觉得还是比较好理解.可能还会有错误,希望大佬友情指出. 最后,祝各位看官新年快乐. 回家过寒假去咯(虽然就\(4\)天\(qwq\)) 多项式 一个次数界为\(n\)的多项式\(A(x) = \sum_{i = 0…
打开51Nod全部问题页面,在右边题目分类中找到快速傅里叶变换,然后按分值排序,就是本文的题目顺序. 1.大数乘法问题 这个……板子就算了吧. 2.美妙的序列问题 长度为n的排列,且满足从中间任意位置划分为两个非空数列后,左边的最大值>右边的最小值.问这样的排列有多少个%998244353. 多组询问,n,T<=100000. 题解:经过分析可知,不合法的排列一定存在这样一种划分: 我们考虑答案=f[i]=i!-不合法排列个数. 形如 2 1 3 4 6 5 这种排列,会有三种划分方式不合法(…
目录 FFT 系数表示法 点值表示法 复数 DFT(离散傅里叶变换) 单位根的性质 FFT(快速傅里叶变换) IFFT(快速傅里叶逆变换) NTT 阶 原根 扩展知识 FFT 参考blog: 十分简明易懂的FFT(快速傅里叶变换) 快速傅里叶变换(FFT)详解 (下面的图片是来自于这2篇博客里面的,仔细看可以发现右下角有水印--) 系数表示法 一个一元\(n\)次多项式\(f(x)\)可以被表示为:\[f(x) = \sum_{i = 0}^{n}a_{i}x^{i}\] 即用\(i\)次项的系…
(原稿:https://paste.ubuntu.com/p/yJNsn3xPt8/) 快速傅里叶变换,是求两个多项式卷积的算法,其时间复杂度为$O(n\log n)$,优于普通卷积求法,且根据有关证明,快速傅里叶变换是基于变换求卷积的理论最快算法. 关于FFT的介绍,最详细易懂的是<算法导论>上的内容. 其大致介绍与代码在这里:http://www.cnblogs.com/rvalue/p/7351400.html. 1.FFT&NTT模板 #include<cmath>…