在RLS自适应滤波器的实现过程中,难免不涉及矩阵的求逆运算.而求逆操作双是非常耗时的,一个很自然的想法就是尽可能的避免直接对矩阵进行求逆运算.那么,在RLS自适应滤波器的实现中,有没有一种方法能避免直接求逆运算呢?答案当然是用的:使用矩阵求逆引理来避免对矩阵进行直接求逆. 这里先对矩阵求逆引理做下介绍,也叫做Woodbury矩阵恒等式(或者称做Sherman–Morrison formula,这里统一称矩阵求逆引理)在线性代数中: \[{\left( {A + UCV} \right)^{ -…
======= Wikipedia的解释 ======= 自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器.作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数. 对于一些应用来说,由于事先并不知道所需要进行操作的参数,例如一些噪声信号的特性,所以要求使用自适应的系数进行处理.在这种情况下,通常使用自适应滤波器,自适应滤波器使用反馈来调整滤波器系数以及频率响应. 总的来说,自适应的过程涉及到将代价函数用于确定如何更改滤波器系数从而减小下一次迭代过程成本的…
论文地址:https://indico2.conference4me.psnc.pl/event/35/contributions/3364/attachments/777/815/Thu-1-10-4.pdf 一种基于深度学习的鲁棒级联回声消除算法 摘要 AEC是用来消除扬声器和麦克风之间的反馈.理想情况下,AEC是一个线性问题,可以通过自适应滤波来解决.然而,在实际应用中,有两个重要的问题严重影响AEC的性能,即1)双讲问题和2)主要由扬声器和/或功率放大器引起的非线性失真.针对这两个问题,…
论文地址:https://ieeexplore.ieee.org/abstract/document/9357975/ 基于半盲源分离的非线性回声消除 摘要: 当使用非线性自适应滤波器时,数值模型与实际非线性模型之间的不匹配是非线性声回声消除(NAEC)的一个挑战.为了解决这一问题,我们提出了一种基于半盲源分离(SBSS)的有效方法,该方法对无记忆非线性进行基泛展开,然后将未知的非线性展开系数合并到回声路径中.将远端输入信号的所有基函数视为已知的等效参考信号,推导了一种基于约束比例自然梯度策略的…
作者:桂. 时间:2017-04-02  08:08:31 链接:http://www.cnblogs.com/xingshansi/p/6658203.html 声明:欢迎被转载,不过记得注明出处哦~ [读书笔记08] 前言 西蒙.赫金的<自适应滤波器原理>第四版第五.六章:最小均方自适应滤波器(LMS,Least Mean Square)以及归一化最小均方自适应滤波器(NLMS,Normalized Least Mean Square).全文包括: 1)LMS与维纳滤波器(Wiener F…
作者:桂. 时间:2017-03-26  06:06:44 链接:http://www.cnblogs.com/xingshansi/p/6621185.html 声明:欢迎被转载,不过记得注明出处哦~ [读书笔记04] 前言 仍然是西蒙.赫金的<自适应滤波器原理>第四版第二章,首先看到无约束维纳滤波,接着到了一般约束条件的滤波,此处为约束扩展的维纳滤波,全文包括: 1)背景介绍: 2)广义旁瓣相消(Generalized Sidelobe Cancellation, GSC)理论推导: 3)…
作者:桂. 时间:2017-03-24  06:52:36 链接:http://www.cnblogs.com/xingshansi/p/6609317.html 声明:欢迎被转载,不过记得注明出处哦~ [读书笔记03] 前言 西蒙.赫金的<自适应滤波器原理>第四版,上一篇看到维纳滤波基本形式:最优化问题,且无任何条件约束.这次看到有约束的部分,简单整理一下思路: 1)拉格朗日乘子法: 2)线性约束最小方差滤波器(Linearly constrained minimum-variance,LC…
作者:桂. 时间:2017-03-23  06:28:45 链接:http://www.cnblogs.com/xingshansi/p/6603263.html [读书笔记02] 前言 仍然是西蒙.赫金的<自适应滤波器原理>第四版,距离上次看这本书已经过去半个月,要抓点紧了.本文主要包括: 1)何为维纳滤波器(Wiener Filter); 2)Wiener滤波器的推导: 3)应用实例: 4)Wiener变体: 内容为自己的学习总结,内容多有参考他人,最后一并给出链接. 一.维纳滤波器简介…
7.3.3 自适应滤波器 自适应中值滤波器 对于7.3.2节所讨论的中值滤波器,只要脉冲噪声的空间密度不大,性能还是可以的(根据经验需Pa和Pb小于0.2).本节将证明,自适应中值滤波器可以处理更大概率的脉冲噪声.自适应中值滤波器的另一个优点是平滑非脉冲噪声时,试图保留细节,这是传统中值滤波器所做不到的.正如前面几节中所讨论的所有滤波器一样,自适应中值滤波器也工作于矩形窗口区域Sxy内.然而,与这些滤波器不同的是自适应中值滤波器在进行滤波处理时,会根据本节列举的某些条件而改变(增大或缩小)Sxy…
原 https://blog.csdn.net/alwaystry/article/details/52756051 图像算法五:[图像小波变换]多分辨率重构.Gabor滤波器.Haar小波 2018年11月30日 01:49:25 芥末酱- 阅读数:720    版权声明:不允许转载本博客文章,否则违版必究. https://blog.csdn.net/weixin_42346564/article/details/84642513 matlab设计: 与单纯运用某种自适应算法相比,基于小波分…