海量数据处理之top K问题】的更多相关文章

Top-k的最小堆解决方法 问题描述:有N(N>>10000)个整数,求出其中的前K个最大的数.(称作Top k或者Top 10) 问题分析:由于(1)输入的大量数据:(2)只要前K个,对整个输入数据的保存和排序是相当的不可取的. 可以利用数据结构的最小堆来处理该问题. 最小堆如图所示,对于每个非叶子节点的数值,一定不大于孩子节点的数值.这样可用含有K个节点的最小堆来保存K个目前的最大值(当然根节点是其中的最小数值). 每次有数据输入的时候可以先与根节点比较.若不大于根节点,则舍弃:否则用新数…
题目: CVTE笔试题https://www.1024do.com/?p=3949 搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节. 假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个.一个查询串的重复度越高,说明查询它的用户越多,也就是越热门.),请你统计最热门的10个查询串,要求使用的内存不能超过1G.   思路:此题解题步骤可分为两步:1.统计每个“查询串”(下称为query)出现的次数  …
前两天面试3面学长问我的这个问题(想说TEG的3个面试学长都是好和蔼,希望能完成最后一面,各方面原因造成我无比想去鹅场的心已经按捺不住了),这个问题还是建立最小堆比较好一些. 先拿10000个数建堆,然后一次添加剩余元素,如果大于堆顶的数(10000中最小的),将这个数替换堆顶,并调整结构使之仍然是一个最小堆,这样,遍历完后,堆中的10000个数就是所需的最大的10000个.建堆时间复杂度是O(mlogm),算法的时间复杂度为O(nmlogm)(n为10亿,m为10000). 优化的方法:可以把…
作者:July出处:结构之法算法之道blog 以下是原博客链接网址 http://blog.csdn.net/v_july_v/article/details/7382693 微软面试100题系列 http://blog.csdn.net/column/details/ms100.html 前言 一般而言,标题含有“秒杀”,“99%”,“史上最全/最强”等词汇的往往都脱不了哗众取宠之嫌,但进一步来讲,如果读者读罢此文,却无任何收获,那么,我也甘愿背负这样的罪名,:-),同时,此文可以看做是对这篇…
程序员编程艺术:第三章续.Top K算法问题的实现 作者:July,zhouzhenren,yansha.     致谢:微软100题实现组,狂想曲创作组.     时间:2011年05月08日     微博:http://weibo.com/julyweibo .     出处:http://blog.csdn.net/v_JULY_v .     wiki:http://tctop.wikispaces.com/. --------------------------------------…
1. 问题描述 在大规模数据处理中,常遇到的一类问题是,在海量数据中找出出现频率最高的前K个数,或者从海量数据中找出最大的前K个数,这类问题通常称为“top K”问题,如:在搜索引擎中,统计搜索最热门的10个查询词:在歌曲库中统计下载率最高的前10首歌等等. 2. 当前解决方案 针对top k类问题,通常比较好的方案是[分治+trie树/hash+小顶堆],即先将数据集按照hash方法分解成多个小数据集,然后使用trie树或者hash统计每个小数据集中的query词频,之后用小顶堆求出每个数据集…
Hash表算法处理海量数据处理面试题 主要针对遇到的海量数据处理问题进行分析,参考互联网上的面试题及相关处理方法,归纳为三种问题 (1)数据量大,内存小情况处理方式(分而治之+Hash映射) (2)判断元素是否在集合中(布隆过滤器+BitMap) (3)各种TOPN(存储和各种排序) 经典问题分析 上千万or亿数据(有重复),统计其中出现次数最多的前N个数据,分两种情况:可一次读入内存,不可一次读入. 可用思路:trie树+堆,数据库索引,划分子集分别统计,hash,分布式计算,近似统计,外排序…
来吧骚年,看看海量数据处理方面的面试题吧. 原文:(Link, 其实引自这里 Link, 而这个又是 Link 的总结) 另外还有一个系列,挺好的:http://blog.csdn.net/v_july_v/article/category/1106578 另: Given 1 billion number, get the largest 1 million. Large dataset means you cannot store all of them and sort. 注:因为1 mi…
海量数据处理算法—Bloom Filter 1. Bloom-Filter算法简介 Bloom-Filter,即布隆过滤器,1970年由Bloom中提出.它可以用于检索一个元素是否在一个集合中. Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.它是一个判断元素是否存在集合的快速的概率算法.Bloom Filter有可能会出现错误判断,但不会漏掉判断.也就是Bloom Filter判断元素不再集合,那肯定不在.如…
作者:林冠宏 / 指尖下的幽灵 掘金:https://juejin.im/user/587f0dfe128fe100570ce2d8 博客:http://www.cnblogs.com/linguanh/ GitHub : https://github.com/af913337456/ 腾讯云专栏: https://cloud.tencent.com/developer/user/1148436/activities 仅列举一些解决方法,事实的解决方案是非常多的. 这些问题都是面临着有如下的考虑…