前言: 文章:CNN的结构分析-------:  文章:历年ImageNet冠军模型网络结构解析-------: 文章:GoogleLeNet系列解读-------: 文章:DNN结构演进History-CNN-GoogLeNet :Going Deeper with Convolutions :文章:Google最新开源Inception-ResNet-v2,借助残差网络进一步提升图像分类水准-----附有代码解析: 文章:深入浅出--网络模型中Inception的作用与结构全解析  科普一下…
前言:CNN迎接多类的挑战 特定类型的传统PR方法特征提取的方法是固定的,模式函数的形式是固定的,在理论上产生了特定的"局限性" 的,分类准确度可以使用PAC学习理论的方法计算出来.特定函数形式的模式识别准确度.泛化误差都受到模型本身VC维的限制. 使用不受限制的多层网络取代可以有明确语法形式的传统网络,可以突破特征提取和模式函数的固有限制,也导致了模式识别的黑盒方法--不停的实验,使用更多的数据直至接近遍历,提高训练测试技巧,直到评测结果达到最优.随着类别的增加,和更高准确率的要求,…
接上一篇:AI:IPPR的数学表示-CNN基础结构进化(Alex.ZF.Inception.Res.InceptionRes). 抄自于各个博客,有大量修改,如有疑问,请移步各个原文.....  前言:AutoML-NasNet VGG结构和INception结构.ResNet基元结构的出现,验证了通过反复堆叠小型inception结构可以构建大型CNN网络,而构建过程可以通过特定的规则自动完成.自动完成大型网络的稀疏性构建出现了一定的人为指导,如Mobile.xception.Shuffle.…
前言: 随着超量类别PR和高精度的需求,人工特征方法局限性凸显出来,固定的特征hash压缩映射因其压缩损失.表现为特定的特征hash方法,在海量的同类数据集上近邻特性变差,而在不同类别的数据上面隔离性又出现问题. 既然人工构建的特征hash函数并不能满足每一个场景的需求,每个经验都有局限,且特征提取的压缩映射必然导致压缩损失,为何不略过此环节,使用数据来完成此过程.越多的数据可生成越精确的分类结果,这就引出了一站式图像处理PR方法--CNN方法.IPPR又从框架分治法回到一站式框架方法. 从20…
类似于SVM,CNN为代表的DNN方法的边缘参数随着多类和高精度的要求必然增长.比如向量机方法,使用可以映射到无穷维的高斯核,即使进行两类分类,在大数据集上得到高精度,即保持准确率和高精度的双指标,支持向量的个数会随着数据集增长,SVM三层网会变得非常宽.CNN方法的多层结构,在保留边缘映射的数目的同时可以有效地降低"支持向量"的个数,是通过函数复合-因式分解得到的,至于要使用多少层的网络,每一层网神经元的个数,两层之间的链接方式,理论上也应该有一般的指导规则. 参考链接:人工机器:作…
前言: 原文链接:基于CNN的目标检测发展过程       文章有大量修改,如有不适,请移步原文. 参考文章:图像的全局特征--用于目标检测 目标的检测和定位中一个很困难的问题是,如何从数以万计的候选窗口中挑选包含目标物的物体.只有候选窗口足够多,才能保证模型的 Recall.传统机器学习方法应用,使用全局特征+级联分类器的思路仍然被持续使用.常用的级联方法有haar/LBP特征+Adaboost决策树分类器级联检测 和HOG特征 + SVM分类器级联检测. DPM方法为08年提出的一种可进行级…
前言: ANN是个语义黑箱的意思是没有通用明确的函数表示,参数化的模型并不能给出函数的形式,更进而不能表示函数的实际意义. 而CNN在图像处理方面具有天然的理论优势,而Conv层和Polling层,整流层等都有明确的意义.可以跳过函数形式直接进行语义级别的解析. 可视化是直观理解的一个重要方式,CNN可视化可以辅助对特定数据集绕过语法,直接进行特定网络语义级别的解析.在CNN可视化之后,你可以看到整个特征提取的表象和结果. 这就是一个有趣的地方,我们难以规约卷积核有怎样的函数形式,有怎么样的语法…
原文链接:何恺明团队提出 Focal Loss,目标检测精度高达39.1AP,打破现有记录     呀 加入Facebook的何凯明继续优化检测CNN网络,arXiv 上发现了何恺明所在 FAIR 团队的最新力作:"Focal Loss for Dense Object Detection(用于密集对象检测的 Focal Loss 函数)". 孔涛博士在知乎上这么写道: 目标的检测和定位中一个很困难的问题是,如何从数以万计的候选窗口中挑选包含目标物的物体.只有候选窗口足够多,才能保证模…
有兴趣查看原文:YOLO详解 人眼能够快速的检测和识别视野内的物体,基于Maar的视觉理论,视觉先识别出局部显著性的区块比如边缘和角点,然后综合这些信息完成整体描述,人眼逆向工程最相像的是DPM模型. 目标的检测和定位中一个很困难的问题是,如何从数以万计的候选窗口中挑选包含目标物的物体.只有候选窗口足够多,才能保证模型的 Recall.传统机器学习方法应用,使用全局特征+级联分类器的思路仍然被持续使用.常用的级联方法有haar/LBP特征+Adaboost决策树分类器级联检测 和HOG特征 +…
一.进行误差分析 很多时候我们发现训练出来的模型有误差后,就会一股脑的想着法子去减少误差.想法固然好,但是有点headlong~ 这节视频中吴大大介绍了一个比较科学的方法,具体的看下面的例子 还是以猫分类器为例,假设我们的模型表现的还不错,但是依旧存在误差,预测后错误标记的数据中有一部分狗图片被错误的标记成了猫.这个时候按照一般的思路可能是想通过训练出狗分类器模型来提高猫分类器,或者其他的办法,反正就是要让分类器更好地区分狗和猫. 但是现在的问题是,假如错误分类的100个样本中,只有5个狗样本被…