小结: 1. 很多时候,编译器和 CPU 引起内存乱序访问不会带来什么问题,但一些特殊情况下,程序逻辑的正确性依赖于内存访问顺序,这时候内存乱序访问会带来逻辑上的错误, 2. https://github.com/torvalds/linux/blob/master/Documentation/memory-barriers.txt#L111 ============================ ABSTRACT MEMORY ACCESS MODEL ===================…
理解 Memory barrier(内存屏障) 发布于 2014 年 04 月 21 日2014 年 05 月 15 日 作者 name5566 参考文献列表:http://en.wikipedia.org/wiki/Memory_barrierhttp://en.wikipedia.org/wiki/Out-of-order_executionhttps://www.kernel.org/doc/Documentation/memory-barriers.txt 本文例子均在 Linux(g+…
并发编程 memory barrier (内存栅栏) CPU级 1.CPU中有多条流水线,执行代码时,会并行进行执行代码,所以CPU需要把程序指令 分配给每个流水线去分别执行,这个就是乱序执行: 2.CPU中有read buffer/ write buffer 这2个读写缓存,这2个部件用于缓存CPU对内存的读写操作,并不是实时同步到CPU缓存(L1/L2/L3),这个就会导致更新一块内存后,其他CPU感知不到: 读取的时候,优先到read buffer找数据,找到了,就用这个数据了,如果这时内…
原文:https://www.cnblogs.com/my_life/articles/5220172.html Memory barrier 简介 程序在运行时内存实际的访问顺序和程序代码编写的访问顺序不一定一致,这就是内存乱序访问.内存乱序访问行为出现的理由是为了提升程序运行时的性能.内存乱序访问主要发生在两个阶段: 编译时,编译器优化导致内存乱序访问(指令重排) 运行时,多 CPU 间交互引起内存乱序访问 Memory barrier 能够让 CPU 或编译器在内存访问上有序.一个 Mem…
转自:http://name5566.com/4535.html 参考文献列表:http://en.wikipedia.org/wiki/Memory_barrierhttp://en.wikipedia.org/wiki/Out-of-order_executionhttps://www.kernel.org/doc/Documentation/memory-barriers.txt 本文例子均在 Linux(g++)下验证通过,CPU 为 X86-64 处理器架构.所有罗列的 Linux 内…
一直以来.I/O顺序问题一直困扰着我.事实上这个问题是一个比較综合的问题,它涉及的层次比較多,从VFS page cache到I/O调度算法,从i/o子系统到存储外设.而Linux I/O barrier就是当中重要的一部分. 可能非常多人觉得,在做了文件写操作后,调用fsycn就能保证数据可靠地写入磁盘.大多数情况下,确实如此. 可是,由于缓存的存在.fsycn这些同步操作.并不能保证存储设备把数据写入非易失性介质. 假设此时存储设备发生掉电或者硬件错误.此时存储缓存中的数据将会丢失.这对于像…
背景 同步基元分为用户模式和内核模式 用户模式:Iterlocked.Exchange(互锁).SpinLocked(自旋锁).易变构造(volatile关键字.volatile类.Thread.VolatitleRead|Thread.VolatitleWrite).MemoryBarrier. 内存屏障(英語:Memory barrier),也称内存栅栏,内存栅障,屏障指令等,是一类同步屏障指令,它使得 CPU 或编译器在对内存进行操作的时候, 严格按照一定的顺序来执行, 也就是说在内存屏障…
目录 1. 前言2 2. 结论2 3. volatile应用场景3 4. 内存屏障(Memory Barrier)4 5. setjmp和longjmp4 1) 结果1(非优化编译:g++ -g -o x x.cpp -O0) 5 2) 结果2(优化编译:g++ -g -o x x.cpp -O2) 6 6. 不同CPU架构的一致性模型6 7. x86-TSO7 8. C++标准库对内存顺的支持7 1) 头文件<stdatomic.h> 7 2) 头文件<atomic> 8 附1:…
Memory Barrier http://www.wowotech.net/kernel_synchronization/memory-barrier.html 这里面讲了Memory Barrier 对于一个c程序员,我们的编写的代码能所见即所得吗?我们看到的c程序的逻辑是否就是最后CPU运行的结果呢?很遗憾,不是,我们的"所见"和最后的执行结果隔着: 1.编译器 2.CPU取指执行 编译器了解底层CPU的思维模式,因此,它可以在将c翻译成汇编的时候进行优化(例如内存访问指令的重新…
本文例子均在 Linux(g++)下验证通过,CPU 为 X86-64 处理器架构.所有罗列的 Linux 内核代码也均在(或只在)X86-64 下有效. 本文首先通过范例(以及内核代码)来解释 Memory barrier,然后介绍一个利用 Memory barrier 实现的无锁环形缓冲区. Memory barrier 简介 程序在运行时内存实际的访问顺序和程序代码编写的访问顺序不一定一致,这就是内存乱序访问.内存乱序访问行为出现的理由是为了提升程序运行时的性能.内存乱序访问主要发生在两个…
       要了解如何使用memory barrier,最好的方法是明白它为什么存在.CPU硬件设计为了提高指令的执行速度,增设了两个缓冲区(store buffer, invalidate queue).这个两个缓冲区可以避免CPU在某些情况下进行不必要的等待,从而提高速度,但是这两个缓冲区的存在也同时带来了新的问题.下面我们一步步来分析说明 1. cache一致性问题 Cache 一致性问题出现的原因是在一个多处理器系统中,每个处理器核心都有独占的Cache 系统(比如一级 Cache 和…
本文转载自:http://name5566.com/4535.html 参考文献列表:http://en.wikipedia.org/wiki/Memory_barrierhttp://en.wikipedia.org/wiki/Out-of-order_executionhttps://www.kernel.org/doc/Documentation/memory-barriers.txt 本文例子均在 Linux(g++)下验证通过,CPU 为 X86-64 处理器架构.所有罗列的 Linu…
最近一个项目中用到了peterson算法来做临界区的保护,简简单单的十几行代码,就能实现两个线程对临界区的无锁访问,确实很精炼.但是在这不是来分析peterson算法的,在实际应用中发现peterson算法并不能对临界区进行互斥访问,也就是说两个线程还是有可能同时进入临界区.但是按照代码的分析,明明可以实现互斥访问的呀,这是怎么回事呢? 首先用一个测试程序来检验一下.临界区是对一个全局变量的自加一运算,两个线程各加一百万次,最后结果应该是两百万.由于自加一运算不是原子的,如果两个线程同时进入临界…
转自:http://www.wowotech.net/kernel_synchronization/memory-barrier.html 一.前言 我记得以前上学的时候大家经常说的一个词汇叫做所见即所得,有些编程工具是所见即所得的,给程序员带来极大的方便.对于一个c程序员,我们的编写的代码能所见即所得吗?我们看到的c程序的逻辑是否就是最后CPU运行的结果呢?很遗憾,不是,我们的“所见”和最后的执行结果隔着: 1.编译器 2.CPU取指执行 编译器将符合人类思考的逻辑(c代码)翻译成了符合CPU…
volatile类型修饰符 本篇文章的目的是为了自己梳理面试知识点, 在这里做一下笔记. 绝大部分内容是基于这些文章的内容进行了copy+整理: 1. http://www.infoq.com/cn/articles/ftf-java-volatile 2. http://www.cnblogs.com/Mainz/p/3556430.html 后期还会加的内容: https://blog.csdn.net/sunmenggmail/article/details/16335897 http:/…
一.前言 我记得以前上学的时候大家经常说的一个词汇叫做所见即所得,有些编程工具是所见即所得的,给程序员带来极大的方便.对于一个c程序员,我们的编写的代码能所见即所得吗?我们看到的c程序的逻辑是否就是最后CPU运行的结果呢?很遗憾,不是,我们的“所见”和最后的执行结果隔着: 1.编译器 2.CPU取指执行 编译器将符合人类思考的逻辑(c代码)翻译成了符合CPU运算规则的汇编指令,编译器了解底层CPU的思维模式,因此,它可以在将c翻译成汇编的时候进行优化(例如内存访问指令的重新排序),让产出的汇编指…
在上一篇博文中笔者讨论了关于原子操作和自旋锁的相关内容,本篇博文将继续锁机制的讨论,包括内存屏障.读写自旋锁以及顺序锁的相关内容.下面首先讨论内存屏障的相关内容. 三.内存屏障 不知读者是是否记得在笔者讨论自旋锁的禁止或使能的时候,提到过一个内存屏障函数.OK,接下来,笔者将讨论内存屏障的具体细节内容.我们首先来看下它的概念,Memory Barrier是指编译器和处理器对代码进行优化(对读写指令进行重新排序)后,导致对内存的写入操作不能及时的反应到读操作中(锁机制无法保证时序正确).可能读起来…
大话Linux内核中锁机制之内存屏障.读写自旋锁及顺序锁 在上一篇博文中笔者讨论了关于原子操作和自旋锁的相关内容,本篇博文将继续锁机制的讨论,包括内存屏障.读写自旋锁以及顺序锁的相关内容.下面首先讨论内存屏障的相关内容. 三.内存屏障 不知读者是是否记得在笔者讨论自旋锁的禁止或使能的时候,提到过一个内存屏障函数.OK,接下来,笔者将讨论内存屏障的具体细节内容.我们首先来看下它的概念,Memory Barrier是指编译器和处理器对代码进行优化(对读写指令进行重新排序)后,导致对内存的写入操作不能…
接下来看看volatile是如何解决上面两个问题的: 被volatile修饰的变量在编译成字节码文件时会多个lock指令,该指令在执行过程中会生成相应的内存屏障,以此来解决可见性跟重排序的问题. 内存屏障的作用: 1.在有内存屏障的地方,会禁止指令重排序,即屏障下面的代码不能跟屏障上面的代码交换执行顺序. 2.在有内存屏障的地方,线程修改完共享变量以后会马上把该变量从本地内存写回到主内存,并且让其他线程本地内存中该变量副本失效(使用MESI协议) 作者:凌风郎少链接:https://www.ji…
一.摘要 三级缓存,MESI缓存一致性协议,指令重排,内存屏障,JMM,volatile.单拿一个出来,想必大家对这些概念应该有一定了解.但是这些东西有什么必然的联系,或者他们之间究竟有什么前世今生想必是困扰大家的一个问题.为什么有了MESI协议,我们还需要volatile?内存屏障的由来?指令重排带来的问题?下面我们通过分析每一个技术的由来,以及带来的负面影响,跟大家探讨一下这些技术之间的联系.具体每个关键词相关文章也很多不再赘述,只谈个人理解. 二.三级缓存篇 1,三级缓存的由来 CPU的发…
1 cache简介 1.1 cache缓存映射规则 tag查看cache是否匹配,set index |tag |set index |block offset ||20-bit |7-bit |5bit | 1.2 cache 组织方式 Cache 全关联cache 组关联cache 4路组关联 四路组关联:cache包括128个cache set(不为0表示组关联,为0表示全关联fully Associative cache)每个cache set包含四个cache line(四路,同一数据…
一.CPU高速缓存简单介绍 CPU高速缓存机制的引入,主要是为了解决CPU越来越快的运行速度与相对较慢的主存访问速度的矛盾.CPU中的寄存器数量有限,在执行内存寻址指令时,经常需要从内存中读取指令所需的数据或是将寄存器中的数据写回内存.而CPU对内存的存取相对CPU自身的速度而言过于缓慢,在内存存取的过程中CPU只能等待,机器效率太低. 为此,设计者在CPU与内存之间引入了高速缓存.CPU中寄存器的存储容量小,访问速度极快:内存存储容量很大,但相对寄存器而言访问速度很慢.而高速缓存的存储大小和访…
为什么会有内存屏障 每个CPU都会有自己的缓存(有的甚至L1,L2,L3),缓存的目的就是为了提高性能,避免每次都要向内存取.但是这样的弊端也很明显:不能实时的和内存发生信息交换,分在不同CPU执行的不同线程对同一个变量的缓存值不同. 用volatile关键字修饰变量可以解决上述问题,那么volatile是如何做到这一点的呢?那就是内存屏障,内存屏障是硬件层的概念,不同的硬件平台实现内存屏障的手段并不是一样,java通过屏蔽这些差异,统一由jvm来生成内存屏障的指令. 内存屏障是什么 硬件层的内…
https://baike.baidu.com/item/内存屏障 内存屏障,也称内存栅栏,内存栅障,屏障指令等, 是一类同步屏障指令,是CPU或编译器在对内存随机访问的操作中的一个同步点,使得此点之前的所有读写操作都执行后才可以开始执行此点之后的操作.   中文名 内存屏障 别    称 内存栅栏,内存栅障 性    质 同步屏障指令 条    件 现代计算机为了提高性能 简介 编辑 大多数现代计算机为了提高性能而采取乱序执行,这使得内存屏障成为必须. 语义上,内存屏障之前的所有写操作都要写入…
前言 内存屏障(英语:Memory barrier),也称内存栅栏,内存栅障,屏障指令等,是一类同步屏障指令,它使得 CPU 或编译器在对内存进行操作的时候, 严格按照一定的顺序来执行, 也就是说在内存屏障之前的指令和内存屏障之后的指令不会由于系统优化等原因而导致乱序. 大多数现代计算机为了提高性能而采取乱序执行,这使得内存屏障成为必须. 语义上,内存屏障之前的所有写操作都要写入内存:内存屏障之后的读操作都可以获得同步屏障之前的写操作的结果.因此,对于敏感的程序块,写操作之后.读操作之前可以插入…
案例如下的.我个人理解是不会出现出现0,0的结果,但是很明显出现了. 说明对我对 Volatile\内存屏障\乱序排序的理解是不对. 今天就通过这个案例,理清这些概念. using System; using System.Threading; using System.Threading.Tasks; namespace MemoryBarriers { class Program { static volatile int x, y, a, b; static void Main() { w…
前言 事情是这样的,一位读者看了我的一篇文章,不认同我文章里面的观点,于是有了下面的交流. 可能是我发的那个狗头的表情,让这位读者认为我不尊重他.于是,这位读者一气之下把我删掉了,在删好友之前,还叫我回家种田. 说实话,你说我菜我是承认的,但你要我回家种田,我不理解.为什么要回家种田呢?养猪不比种田赚钱吗? 我想了很久没有想明白,突然,我看到了这个新闻,瞬间明白了读者的用心良苦. 于是,我决定写下这篇文章,好好地分析一下读者提出的几个问题. 读者的观点 针对这位读者的几个观点: volatile…
在高并发模型中,无是面对物理机SMP系统模型,还是面对像JVM的虚拟机多线程并发内存模型,指令重排(编译器.运行时)和内存屏障都是非常重要的概念,因此,搞清楚这些概念和原理很重要.否则,你很难搞清楚哪些操作是在并发先绝对安全的?哪些是相对安全的?哪些并发同步手段性能最低?valotile的二层语义分别是什么?等等. 本来打算自己写一篇有关JVM内存模型的博文,后来整理资料的时候偶然发现一篇很好的相关文章(出自美团点评团队),个人感觉这篇文章写得比较全面,最起码概念层的东西讲清楚了,遂转载给大家.…
单例模式的双重校验锁的实现: 第一种: private static Singleton _instance; public static synchronized Singleton getInstance() { if (_instance == null) { _instance = new Singleton(); } return _instance; } 在 static 方法上加 synchronized,等同于将整个类锁住.每当通过此静态方法得到该对象时,就需要同步. 如果是实例…
关键词:. <Linux并发与同步专题 (1)原子操作和内存屏障> <Linux并发与同步专题 (2)spinlock> <Linux并发与同步专题 (3) 信号量> <Linux并发与同步专题 (4) Mutex互斥量> <Linux并发与同步专题 (5) 读写锁> <Linux并发与同步专题 (6) RCU> <Linux并发与同步专题 (7) 内存管理中的锁> <Linux并发与同步专题 (8) 最新更新与展望…