理解CART决策树】的更多相关文章

CART算法 原理 CART全称为Classification and Regression Tree. 回归树 相比ID3,CART遍历所有的特征和特征值,然后使用二元切分法划分数据子集,也就是每个节点都只会分裂2个分支.接着计算数据子集的总方差来度量数据子集的混乱程度,总方差越小数据子集越纯,最后选择总方差最小的划分方式对应的特征和特征值,而二元切分的依据就是将小于等于这个特征值和大于这个特征值的数据划分为两块.这里说的总方差一般就是通过数据子集的样本输出值的均方差 * 数据子集的样本个数来…
决策树是一类常见的机器学习方法,它可以实现分类和回归任务.决策树同时也是随机森林的基本组成部分,后者是现今最强大的机器学习算法之一. 1. 简单了解决策树 举个例子,我们要对”这是好瓜吗?”这样的问题进行决策时,通常会进行一系列的判断:我们先看”它是什么颜色的”,如果是”青绿色”, 我们再看”它的根蒂是什么形态”,如果是”蜷缩”,我们再判断”它敲起来是什么声音”,最后我们判断它是一个好瓜.决策过程如下图所示. 决策过程的最终结论对应了我们所希望的判定结果,”是”或”不是”好瓜.上图就是一个简单的…
sklearn CART决策树分类 决策树是一种常用的机器学习方法,可以用于分类和回归.同时,决策树的训练结果非常容易理解,而且对于数据预处理的要求也不是很高. 理论部分 比较经典的决策树是ID3.C4.5和CART,分别分析信息增益.增益率.基尼指数,总体思想是不断降低信息的不确定性,最后达到分类的目的. 这里介绍的CART(Classification And Regression Tree)决策树选用基尼指数(Gini Index)来依次选择划分属性 \[Gini(D)=\sum_{k=1…
一.CART决策树模型概述(Classification And Regression Trees)   决策树是使用类似于一棵树的结构来表示类的划分,树的构建可以看成是变量(属性)选择的过程,内部节点表示树选择那几个变量(属性)作为划分,每棵树的叶节点表示为一个类的标号,树的最顶层为根节点. 决策树是通过一系列规则对数据进行分类的过程.它提供一种在什么条件下会得到什么值的类似规则的方法.​​决策树算法属于有指导的学习,即原数据必须包含预测变量和目标变量.决策树分为分类决策树(目标变量为分类型数…
 CART(Classification and Regression tree)分类回归树由L.Breiman,J.Friedman,R.Olshen和C.Stone于1984年提出.ID3中根据属性值分割数据,之后该特征不会再起作用,这种快速切割的方式会影响算法的准确率.CART是一棵二叉树,采用二元切分法,每次把数据切成两份,分别进入左子树.右子树.而且每个非叶子节点都有两个孩子,所以CART的叶子节点比非叶子多1.相比ID3和C4.5,CART应用要多一些,既可以用于分类也可以用于回归.…
ID3决策树:利用信息增益来划分节点 信息熵是度量样本集合纯度最常用的一种指标.假设样本集合D中第k类样本所占的比重为pk,那么信息熵的计算则为下面的计算方式 当这个Ent(D)的值越小,说明样本集合D的纯度就越高 有了信息熵,当我选择用样本的某一个属性a来划分样本集合D时,就可以得出用属性a对样本D进行划分所带来的“信息增益” 一般来讲,信息增益越大,说明如果用属性a来划分样本集合D,那么纯度会提升,因为我们分别对样本的所有属性计算增益情况,选择最大的来作为决策树的一个结点,或者可以说那些信息…
CART决策树 (一)<机器学习>(周志华)第4章 决策树 笔记 理论及实现——“西瓜树” 参照上一篇ID3算法实现的决策树(点击上面链接直达),进一步实现CART决策树. 其实只需要改动很小的一部分就可以了,把原先计算信息熵和信息增益的部分换做计算基尼指数,选择最优属性的时候,选择最小的基尼指数即可. #导入模块 import pandas as pd import numpy as np from collections import Counter #数据获取与处理 def getDat…
CART 分裂规则 将现有节点的数据分裂成两个子集,计算每个子集的gini index 子集的Gini index: \(gini_{child}=\sum_{i=1}^K p_{ti} \sum_{i' \neq i} p_{ti'}=1-\sum_{i=1}^K p_{ti}^2\) , 其中K表示类别个数,\(p_{ti}\)表示分类为i的样本在子集中的比例,gini index可以理解为该子集中的数据被错分成其它类别的期望损失 分裂后的Gini index: \(gini_s= \fra…
1 引言 上一篇博客中介绍了ID3和C4.5两种决策树算法,这两种决策树都只能用于分类问题,而本文要说的CART(classification and regression tree)决策树不仅能用于分类问题,也能用于回归问题. 与ID3算法和C4.5算法相比,CART 还有个特性就是其所有非叶子结点都只有两个子树,也就是说在根据特征属性分裂数据集时,无论该特征属性有多少个可能取值,都只有两种选择——‘是’和‘否’,以上文中判断是否是程序员数据集为例,如果根据近视程度进行分裂,可以将数据集分为{…
决策树模型在监督学习中非常常见,可用于分类(二分类.多分类)和回归.虽然将多棵弱决策树的Bagging.Random Forest.Boosting等tree ensembel 模型更为常见,但是“完全生长”决策树因为其简单直观,具有很强的解释性,也有广泛的应用,而且决策树是tree ensemble 的基础,值得好好理解.一般而言一棵“完全生长”的决策树包含,特征选择.决策树构建.剪枝三个过程,这篇文章主要是简单梳理比较ID3.C4.5.CART算法.<统计学习方法>中有比较详细的介绍. 一…