首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[转载]理解weight decay
】的更多相关文章
[转载]理解weight decay
http://blog.sina.com.cn/s/blog_a89e19440102x1el.html…
weight decay(权值衰减)、momentum(冲量)和normalization
一.weight decay(权值衰减)的使用既不是为了提高你所说的收敛精确度也不是为了提高收敛速度,其最终目的是防止过拟合.在损失函数中,weight decay是放在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度,所以weight decay的作用是调节模型复杂度对损失函数的影响,若weight decay很大,则复杂的模型损失函数的值也就大.二.momentum是梯度下降法中一种常用的加速技术.对于一般的SGD,其表达式为,沿负梯度方向下降.而带momen…
在神经网络中weight decay
weight decay(权值衰减)的最终目的是防止过拟合.在损失函数中,weight decay是放在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度,所以weight decay的作用是调节模型复杂度对损失函数的影响,若weight decay很大,则复杂的模型损失函数的值也就大. momentum是梯度下降法中一种常用的加速技术.对于一般的SGD,其表达式为,沿负梯度方向下降.而带momentum项的SGD则写生如下形式:其中即momentum系数,通俗的理…
权重衰减(weight decay)与学习率衰减(learning rate decay)
本文链接:https://blog.csdn.net/program_developer/article/details/80867468“微信公众号” 1. 权重衰减(weight decay)L2正则化的目的就是为了让权重衰减到更小的值,在一定程度上减少模型过拟合的问题,所以权重衰减也叫L2正则化. 1.1 L2正则化与权重衰减系数L2正则化就是在代价函数后面再加上一个正则化项: 其中C0代表原始的代价函数,后面那一项就是L2正则化项,它是这样来的:所有参数w的平方的和,除以训练集的样本大小…
PyTorch 中 weight decay 的设置
先介绍一下 Caffe 和 TensorFlow 中 weight decay 的设置: 在 Caffe 中, SolverParameter.weight_decay 可以作用于所有的可训练参数, 不妨称为 global weight decay, 另外还可以为各层中的每个可训练参数设置独立的 decay_mult, global weight decay 和当前可训练参数的 decay_mult 共同决定了当前可训练参数的 weight decay. 在 TensorFlow 中, 某些接口…
weight decay 和正则化caffe
正则化是为了防止过拟合,因为正则化能降低权重 caffe默认L2正则化 代码讲解的地址:http://alanse7en.github.io/caffedai-ma-jie-xi-4/ 重要的一个回答:https://stats.stackexchange.com/questions/29130/difference-between-neural-net-weight-decay-and-learning-rate 按照这个答主的说法,正则化损失函数,正则化之后的损失函数如下: 这个损失函数求偏…
dying relu 和weight decay
weight decay就是在原有loss后面,再加一个关于权重的正则化,类似与L2 正则,让权重变得稀疏: 参考:https://www.zhihu.com/question/24529483 dying relu是当梯度值过大时,权重更新后为负数,经relu后变为0,导致后面也不再更新. 三种办法:leak-relu.降低学习率.用 momentum based 优化算法,动态调整学习率 参考:https://www.zhihu.com/question/67151971 在训练模型时,有时…
【tf.keras】AdamW: Adam with Weight decay
论文 Decoupled Weight Decay Regularization 中提到,Adam 在使用时,L2 与 weight decay 并不等价,并提出了 AdamW,在神经网络需要正则项时,用 AdamW 替换 Adam+L2 会得到更好的性能. TensorFlow 2.0 在 tensorflow_addons 库里面实现了 AdamW,目前在 Mac 和 Linux 上可以直接 pip install tensorflow_addons,在 windows 上还不支持,但也可以…
[转载] 理解RESTful架构
原文: http://www.ruanyifeng.com/blog/2011/09/restful.html 理解RESTful架构 作者: 阮一峰 日期: 2011年9月12日 越来越多的人开始意识到,网站即软件,而且是一种新型的软件. 这种"互联网软件"采用客户端/服务器模式,建立在分布式体系上,通过互联网通信,具有高延时(high latency).高并发等特点. 网站开发,完全可以采用软件开发的模式.但是传统上,软件和网络是两个不同的领域,很少有交集:软件开发主要针对单机…
[转载] 理解OAuth 2.0
转载自http://www.ruanyifeng.com/blog/2014/05/oauth_2_0.html OAuth是一个关于授权(authorization)的开放网络标准,在全世界得到广泛应用,目前的版本是2.0版. 本文对OAuth 2.0的设计思路和运行流程,做一个简明通俗的解释,主要参考材料为RFC 6749. 一.应用场景 为了理解OAuth的适用场合,让我举一个假设的例子. 有一个"云冲印"的网站,可以将用户储存在Google的照片,冲印出来.用户为了使用该服务,…