首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Luogu P1967 货车运输(Kruskal重构树)
】的更多相关文章
Luogu P1967 货车运输(Kruskal重构树)
P1967 货车运输 题面 题目描述 \(A\) 国有 \(n\) 座城市,编号从 \(1\) 到 \(n\) ,城市之间有 \(m\) 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 \(q\) 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物. 输入输出格式 输入格式: 第一行有两个用一个空格隔开的整数 \(n,m\) ,表示 \(A\) 国有 \(n\) 座城市和 \(m\) 条道路. 接下来 \(m\) 行每行 \(3\) 个整数 \(x,…
Luogu P1967 货车运输
qwq 这题是知道了正解做法才写的.. 求每两点间最小权值最大的路径,本来我以为要每个点都跑一遍dij(?),后来意识到生成树好像是用来找这个的( ´▽`) 然后我问dtxdalao对不对,他说“我记得这道题好像要用倍增”(我:???剧透会被关进小黑屋的) 其实就是最大生成树是随便建的,然后对于每两点,用倍增求他们的lca,沿途更新最小的边权即为答案 其实我也没怎么debug (i--这种问题就不说了吧) 这题思路还算比较清晰,明白做法之后就分别把几个算法写出来就行了, 注意:lca中最小边权的…
Luogu P1967 货车运输 倍增+最大生成树
看见某大佬在做,决定补一发题解$qwq$ 首先跑出最大生成树(注意有可能不连通),然后我们要求的就是树上两点间路径上的最小边权. 我们用倍增的思路跑出来$w[u][j]$,表示$u$与的它$2^j$的祖先路径上的最小边权(其实是为了配合$lca$),然后求$lca$时顺便记一下最小边权. 码风清奇别在意是之前写的 #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #in…
LUOGU P1967 货车运输(最大生成树+树剖+线段树)
传送门 解题思路 货车所走的路径一定是最大生成树上的路径,所以先跑一个最大生成树,之后就是求一条路径上的最小值,用树剖+线段树,注意图可能不连通.将边权下放到点权上,但x,y路径上的lca的答案不能算,因为他的点权来自上面的路径. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; const int inf = 0x…
NOIP 2013 提高组 洛谷P1967 货车运输 (Kruskal重构树)
题目: A 国有 nn 座城市,编号从 11 到 nn,城市之间有 mm 条双向道路.每一条道路对车辆都有重量限制,简称限重. 现在有 qq 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物. 对于每一组询问,相当于求点x到点y中所有路径中最小边权的最大值,这样就是货车的最大载重. 那么这显然可以用Kruskal重构树来解决,将重构树建成大根堆,就可以求最大边权的最小值:同理,小根堆就是最小边权的最大值. 那么做这道题就是重构树的模板题了.复杂度O(q logn…
洛谷p1967货车运输(kruskal重构树)
题面 题解中有很多说最优解是kruskal重构树 所以 抽了个早自习看了看这方面的内容 我看的博客 感觉真的挺好使的 首先对于kruskal算法来说 是基于贪心的思想把边权排序用并查集维护是否是在同一棵树上 对于kruskal重构树来说 按不同边权顺序排序可相应的得到最大边权的最小值 .最小边权的最大值等问题 建树过程: 排好序后, 遍历, 若两条边u, v不在同一并查集内, 那么就新建一个节点, 这个节点的点权就代表u到v的边权, 同时将这三个点都加入同一并查集 需要注意 最后建立出来的可能是…
kruskal - 倍增 - 并查集 - Luogu 1967 货车运输
P1967 货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,从一个地方到另一个地方最多能运多重的货物. 说明 对于 100%的数据,0 < 城市数n < 10,000,0 < 道路数m < 50,000,0 < 询问数q< 30,000,0 ≤ 限重z ≤ 100,000. 鉴于这是个稀疏图,我们用kruskal.…
[luogu P4197] Peaks 解题报告(在线:kruskal重构树+主席树 离线:主席树+线段树合并)
题目链接: https://www.luogu.org/problemnew/show/P4197 题目: 在Bytemountains有N座山峰,每座山峰有他的高度$h_i$.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走 现在有Q组询问,每组询问从点v开始只经过困难值小于等于x的路径所能到达的山峰中第k高的山峰,如果无解输出-1. 在线做法题解: 一句话题解:kruskal重构树dfs序上建主席树直接查询第k大即可 知识点拓展: 下面讲讲kruskal重构…
【Luogu P5168】xtq玩魔塔(Kruskal 重构树 & 树状数组 & set)
Description 给定一个 \(n\) 个顶点,\(m\) 条边的无向联通图,点.边带权. 先有 \(q\) 次修改或询问,每个指令形如 \(\text{opt}\ x\ y\): \(\text{opt}=1\):将顶点 \(x\) 的点权修改为 \(y\): \(\text{opt}=2\):查询顶点 \(x, y\) 间所有路径中路径上最大值中,最小的哪一个最大值(瓶颈路). \(\text{opt}=3\):查询顶点 \(x\) 可以结果边权 \(\le y\) 的边能到达的所有点…
Luogu P4768 [NOI2018]归程(Dijkstra+Kruskal重构树)
P4768 [NOI2018]归程 题面 题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 \(n\) 个节点. \(m\) 条边的无向连通图(节点的编号从 \(1\) 至 \(n\) ).我们依次用 \(l,a\) 描述一条边的长度.海拔. 作为季风气候的代表城市,魔力之都时常有雨水相伴,因此道路积水总是不可避免 的.由于整个城市的排水系统连通,因此有积水的边一定是海拔相对最低的一些边.我们用水位线来描述降雨的程度,它的意义是:所有海拔不超过水位…