转:CRF++词性标注】的更多相关文章

CRF++词性标注 2016-02-28 分类:NLP 阅读(5558) 评论(19)  训练和测试的语料都是人民日报98年标注语料,训练和测试比例是10:1,直接通过CRF++标注词性的准确率:0.933882.特征有一千多万个,训练时间比较长.机器cpu是48核,通过crf++,指定并线数量 -p为40,训练了大概七个小时才结束. 语料库.生成训练数据的python脚本.训练日志.模型.计算准确率脚本都上传到网盘,可以直接下载:戳我下载 CRF++词性标注,程序在centos6.5+pyth…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 7. 词性标注 7.1 词性标注概述 什么是词性 在语言学上,词性(Par-Of-Speech, Pos )指的是单词的语法分类,也称为词类.同一个类别的词语具有相似的语法性质,所有词性的集合称为词性标注集.不同的语料库采用了不同的词性标注集,一般都含有形容词.动词.名词等常见词性.下图就是HanLP输出的一个含有词性的结构化句子. 我/r 的/u 希望/n 是/v 希望/v 张…
本文简单整理了以下内容: (一)马尔可夫随机场(Markov random field,无向图模型)简单回顾 (二)条件随机场(Conditional random field,CRF) 这篇写的非常浅,基于 [1] 和 [5] 梳理.感觉 [1] 的讲解很适合完全不知道什么是CRF的人来入门.如果有需要深入理解CRF的需求的话,还是应该仔细读一下几个英文的tutorial,比如 [4] . (一)马尔可夫随机场简单回顾 概率图模型(Probabilistic graphical model,P…
这是另一套基于CRF的词法分析系统,类似感知机词法分析器,提供了完善的训练与分析接口. CRF的效果比感知机稍好一些,然而训练速度较慢,也不支持在线学习. 默认模型训练自OpenCorpus/pku98/199801.txt,随hanlp 1.6.2以上版本发布. 语料格式等与感知机词法分析器相同,请先阅读<感知机词法分析器>. 中文分词 训练 CRFSegmenter segmenter = new CRFSegmenter(null); segmenter.train("data…
http://x-algo.cn/index.php/2016/02/15/conditional-random-field-crf-theory-and-implementation/ 条件随机场(CRF)是给定一组输入随机变量条件下,求另一组输出随机变量的条件概率分布的模型:其特点是假设输出随机变量构成马尔科夫随机场(后面解释),条件随机场可以用于不同的预测问题,对自然语言处理过程主要是线性(linear chain)条件随机场,这时,问题变成了由输入序列对输出序列预测的判别模型,形式为对数…
Hanlp等七种优秀的开源中文分词库推荐 中文分词是中文文本处理的基础步骤,也是中文人机自然语言交互的基础模块.由于中文句子中没有词的界限,因此在进行中文自然语言处理时,通常需要先进行分词. 纵观整个开源领域,陆陆续续做中文分词的也有不少,不过目前仍在维护的且质量较高的并不多.下面整理了一些个人认为比较优秀的中文分词库,以供大家参考使用. 1.HanLP —— 汉语言处理包 HanLP是一系列模型与算法组成的NLP工具包,由大快搜索主导并完全开源,目标是普及自然语言处理在生产环境中的应用.Han…
一.背景知识 1.1 什么是分词? NLP的基础任务分为三个部分,词法分析.句法分析和语义分析,其中词法分析中有一种方法叫Tokenization,对汉字以字为单位进行处理叫做分词. Example :  我  去  北  京 S       S       B       E 注:S代表一个单独词,B代表一个词的开始,E表示一个词的结束(北京是一个词). 1.2 什么是词性标注? 句法分析中有一种方法叫词性标注(pos tagging),词性标注的目标是使用类似PN.VB等的标签对句子(一连串…
转载自:http://www.68idc.cn/help/jiabenmake/qita/20160530618222.html 首先我们先弄懂什么是"条件随机场",然后再探索其详细内容. 于是,先介绍几个名词. 马尔可夫链 比如:一个人想从A出发到达目的地F,然后中间必须依次路过B,C, D, E,于是就有这样一个状态: 若想到达B,则必须经过A: 若想到达C,则必须经过A, B: 以此类推,最终 若想到达F,则必须经过A,B,C,D,E. 如果把上面的状态写成一个序列的话,那就是:…
CRF(Conditional Random Field) 条件随机场是近几年自然语言处理领域常用的算法之一,常用于句法分析.命名实体识别.词性标注等.在我看来,CRF就像一个反向的隐马尔可夫模型(HMM),两者都是用了马尔科夫链作为隐含变量的概率转移模型,只不过HMM使用隐含变量生成可观测状态,其生成概率由标注集统计得到,是一个生成模型:而CRF反过来通过可观测状态判别隐含变量,其概率亦通过标注集统计得来,是一个判别模型.由于两者模型主干相同,其能够应用的领域往往是重叠的,但在命名实体.句法分…
http://blog.csdn.net/xmdxcsj/article/details/48790317 Crf模型 1.   定义 一阶(只考虑y前面的一个)线性条件随机场: 相比于最大熵模型的输入x和输出y,crf模型的输入输出都是序列化以后的矢量,是对最大熵模型的序列扩展. 相比于最大熵模型的另外一个不同是,crf多出了一个维度j(j表示序列x的位置),即任意一个输出yi,都跟所有的输入x有关. 经过变换,crf概率模型可以转化为: 先求一个位置x的所有特征,再求所有位置x 先求一个维度…