基于PU-Learning的恶意URL检测】的更多相关文章

https://xz.aliyun.com/t/2190 Ya-Lin Zhang, Longfei Li, Jun Zhou, Xiaolong Li, Yujiang Liu, Yuanchao Zhang, Zhi-Hua ZhouNational Key Lab for Novel Software Technology, Nanjing University, ChinaAnt Financial Services Group, China来源: CCS’17 https://dl.a…
PU learning问题描述 给定一个正例文档集合P和一个无标注文档集U(混合文档集),在无标注文档集中同时含有正例文档和反例文档.通过使用P和U建立一个分类器能够辨别U或测试集中的正例文档 [即想要精确分类U或测试集中的正例文档和反例文档] 应用: 从多个无标注集中学习 从不可靠的反例数据中学习 发现测试集中的突发文档 发现异常值 基于PU-Learning的恶意URL检测 from:https://xz.aliyun.com/t/2190 基于PU-Learning的恶意URL检测 Ya-…
基于深度学习的安卓恶意应用检测 from:http://www.xml-data.org/JSJYY/2017-6-1650.htm 苏志达, 祝跃飞, 刘龙     摘要: 针对传统安卓恶意程序检测技术检测准确率低,对采用了重打包和代码混淆等技术的安卓恶意程序无法成功识别等问题,设计并实现了DeepDroid算法.首先,提取安卓应用程序的静态特征和动态特征,结合静态特征和动态特征生成应用程序的特征向量:然后,使用深度学习算法中的深度置信网络(DBN)对收集到的训练集进行训练,生成深度学习网络:…
from:http://www.freebuf.com/articles/system/182566.html 0×01 前言 目前的恶意样本检测方法可以分为两大类:静态检测和动态检测.静态检测是指并不实际运行样本,而是直接根据二进制样本或相应的反汇编代码进行分析,此类方法容易受到变形.加壳.隐藏等方式的干扰.动态检测是指将样本在沙箱等环境中运行,根据样本对操作系统的资源调度情况进行分析.现有的动态行为检测都是基于规则对行为进行打分,分值的高低代表恶意程度的高低,但是无法给出类别定义. 本文采用…
Malware detection 目录 可执行文件简介 检测方法概述 资源及参考文献 可执行文件简介 ELF(Executable Linkable Format) linux下的可执行文件格式,按照ELF格式编写的文件包括:.so..a等 PE(Portable Executable) windows下的可执行文件格式,按照PE格式编写的文件包括: .dll..lib..exe等 参考文献[3]中对ELF的各个字段作了详细介绍 Linux和Windows可执行文件分类: ELF文件类型 说明…
转载请注明出处,谢谢. Android系统开放,各大论坛活跃,应用程序分发渠道广泛,这也就为恶意软件的传播提供了良好的环境.好在手机上安装了安全软件,是否能有效的检测出恶意软件呢?下边针对LBE安全大师.腾讯安全管家和360手机卫士做出一系列实验. 1. Android恶意样本实验. Android Malware Genome Project(http://www.malgenomeproject.org/)收集了2010年8月到2011年10月的涵盖主要恶意软件类型的超过1200个恶意程序样…
一.背景和目的 近年来,随着新业务.新技术的快速发展,应用软件安全缺陷层出不穷.虽然一般情况下,开发者基本都会有单元测试.每日构建.功能测试等环节来保证应用的可用性.但在安全缺陷方面,缺乏安全意识.技能和工具,最终导致了安全缺陷的出现. 对于软件开发安全意识和软件开发安全技能方面本文中不再做详述,软件开发者可通过培训和实践提高自身意识和技能,本文目的主要是提供一种思路和方法,让软件开发者像测试软件功能一样,测试软件安全缺陷,并且能够融入到整个的软件开发过程中. 二.自动化安全代码检测平台概述 2…
Mathematics Malware Detected Tools 重要:由于缺少测试数据,部分结论可能不正确.更多更准确的结论,还需要进行大量实验. 概述 mmdt(Mathematics Malware Detected Tools)是一款基于数学方法的最简单的类"机器学习"工具.该工具通过数学方法对目标对象进行处理,生成相应的标准"指纹",通过对指纹的处理,实现"机器学习"中的"分类"."聚类"方法…
1. 比赛介绍 比赛地址:阿里云恶意程序检测新人赛 这个比赛和已结束的第三届阿里云安全算法挑战赛赛题类似,是一个开放的长期赛. 2. 前期准备 因为训练数据量比较大,本地CPU跑不起来,所以决定用Google的Colaboratory来跑,期间也遇到了几个坑. 首先是文件上传比较慢,几个G的文件直接上传比较耗时,上传压缩包后解压又出现了问题,最后还是得等着上传完,期间换了好几个VPN节点. 解压缩的问题:用unzip命令解压,速度很慢,经常解压到一半就不动了或者与colab的连接断掉了(可能是网…
对于大多数互联网公司,基于日志分析的WEB入侵检测分析是不可或缺的. 那么今天我就给大家讲一讲如何用graylog的extractor来实现这一功能. 首先要找一些能够识别的带有攻击行为的关键字作为匹配的规则. 由于我不是专门搞安全的,所以在网上找了一些软waf的规则脚本. 剩下来的工作就可以交给Graylog的extractor实现了. 这次介绍一下extractor的Copy input用法. (1)waf规则脚本如下: \.\./ select.+(from|limit) (?:(unio…