前言 参考 1.级联分类器: 完…
前言  最近在学习人脸的目标检测任务时,用了Haar人脸检测算法,这个算法实现起来太简洁了,读入个.xml,调用函数就能用.但是深入了解我发现这个算法原理很复杂,也很优秀.究其根源,于是我找了好些篇相关论文,主要读了2001年Paul Viola和Michael Jones在CVPR上发表的一篇可以说是震惊了计算机视觉的文章,<Rapid Objection Dection using a Boosted Cascade of Simple Features>.这个算法最大的特点就是快!在当时…
# 介绍 级联分类器包括两个工作阶段:训练(traning),检测(detection).检测阶段在文档<objdetect module of general OpenCV documentation>中描述,在那篇文档中,给出了一些关于级联分类器的基本信息.本文主要说明如何训练一个级联分类器:准备训练数据,执行训练程序 # 重要提示 有两个程序用来训练级联分类器:opencv_haartraining 和 opencv_traincascade.后者是一个较新的版本,使用c++编写,基于o…
一.简介: adaboost分类器由级联分类器构成,"级联"是指最终的分类器是由几个简单分类器级联组成.在图像检测中,被检窗口依次通过每一级分类器,这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域. 分类器训练完以后,就可以应用于输入图像中的感兴趣区域的检测.检测到目标区域输出为1,否则输出为0.为了检测整副图像,在图像中移动搜索窗口,检测每一个位置来确定可能的目标.为了搜索不同大小的目标物体,在图像中检测未知大小的目标物体,扫描过程中用不同…
介绍 使用级联分类器工作包括两个阶段:训练和检测. 检测部分在OpenCVobjdetect 模块的文档中有介绍,在那个文档中给出了一些级联分类器的基本介绍.当前的指南描述了如何训练分类器:准备训练数据和运行训练程序.参考:http://jingyan.baidu.com/article/4dc40848f50689c8d946f197.html   利用OpenCV自带的haar training程序训练一个分类器,需要经过以下几个步骤: )收集训练样本:         训练样本包括正样本和…
http://www-personal.umich.edu/~jizhu/jizhu/wuke/Friedman-AoS01.pdf https://www.cnblogs.com/bentuwuying/p/6667267.html https://www.cnblogs.com/ModifyRong/p/7744987.html https://www.cnblogs.com/bentuwuying/p/6264004.html 1.简介 gbdt全称梯度下降树,在传统机器学习算法里面是对真…
使用机器学习的方法进行人脸检测的第一步需要训练人脸分类器,这是一个耗时耗力的过程,需要收集大量的正负样本,并且样本质量的好坏对结果影响巨大,如果样本没有处理好,再优秀的机器学习分类算法都是零. 今年3月23日,微软公司在推特(Twitter)社交平台上推出了一个基于机器学习的智能聊天机器人Tay,Tay被设定为一个年龄为十几岁的女孩,主要目标受众是18岁至24岁的青少年.人们只需要@一下Tay,Tay就会追踪该用户的网名.性别.喜欢的食物.邮编.感情状况等个人信息.除了聊天,Tay还可以说笑话,…
Haar分类器使用AdaBoost算法,但是把它组织为筛选式的级联分类器,每个节点是多个树构成的分类器,且每个节点的正确识别率很高.在任一级计算中,一旦获得“不在类别中”的结论,则计算终止.只有通过分类器中所有级别,才会认为物体被检测到.这样的优点是当目标出现频率较低的时候(即人脸在图像中所占比例小时),筛选式的级联分类器可以显著地降低计算量,因为大部分被检测的区域可以很早被筛选掉,迅速判断该区域没有要求被检测的物体. AdaBoost算法就是建立多个弱分类器,给每个弱分类器一个权重,将弱分类器…
这是<opencv2.4.9tutorial.pdf>的objdetect module的唯一一个例子. 在opencv中进行人脸或者人眼 或者身体的检测 首先就是训练好级联分类器,然后就是检测就行.在opencv中,"opencv/sources/data中就有内置训练好的:基于haar特征的级联分类器.基于hog特征的级联分类器.基于lbp特征的级联分类器"三种.相比较来说 算haar文件夹中的分类器最多,其他两个比如:hog的只有一个行人检测分类器"hogc…
在opencv3.0中,提供了一个ml.cpp的文件,这里面全是机器学习的算法,共提供了这么几种: 1.正态贝叶斯:normal Bayessian classifier    我已在另外一篇博文中介绍过:在opencv3中实现机器学习之:利用正态贝叶斯分类 2.K最近邻:k nearest neighbors classifier 3.支持向量机:support vectors machine    请参考我的另外一篇博客:在opencv3中实现机器学习之:利用svm(支持向量机)分类 4.决…