http://blog.csdn.net/zddblog/article/details/7521424 目录(?)[-] 尺度不变特征变换匹配算法详解 Scale Invariant Feature TransformSIFT Just For Fun zdd  zddmailgmailcom or zddhubgmailcom SIFT综述 高斯模糊 1二维高斯函数 2 图像的二维高斯模糊 3分离高斯模糊 1 尺度空间理论 2 尺度空间的表示 3 高斯金字塔的构建 尺度空间在实现时使用高斯金…
尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd  zddmail@gmail.com 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越. 1.SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量,此算法由 Da…
原博客来自:http://blog.csdn.net/zddblog/article/details/7521424 定义: 尺度不变特征转化是一种计算机视觉算法,用于侦测和描述物体的局部性特征,在空间尺度中寻找极值点,这个点是关于大小,明暗,仿射变换稳定的,由David Lowe在1999年发表,2004年总结. 应用场景: 物体识别.机器人地图感知与导航.影像缝合.3d场景建立.手势识别.影像追踪.动作对比. 专利所属: 英属哥伦比亚大学. 简述: 局部影像特征的描述与侦测可以帮助识别物体,…
 备注:源代码还未理解,所以未附上——下周任务 一.SIFT算法 1.算法简介 尺度不变特征转换即SIFT (Scale-invariant feature transform)是一种计算机视觉的算法.它用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结.局部影像特征的描述与侦测可以帮助辨识物体,SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关.对于光线.噪声.些…
尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd  zddmail@gmail.com or (zddhub@gmail.com) 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越. 如果你学习SIFI得目的是为了做检索,也许OpenSSE更适合你,欢迎使用. 1.SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种…
转自:http://blog.csdn.net/pi9nc/article/details/23302075 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越. 1.SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结. 其应用范围…
原文地址 http://blog.csdn.net/pi9nc/article/details/23302075 尺度不变特征变换匹配算法详解 Scale Invariant Feature Transform(SIFT) 1.SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量,此算法由 David Lowe在1999年所发表…
[图像处理笔记]总目录 0 引言 特征提取就是从图像中提取显著并且具有可区分性和可匹配性的点结构.常见的点结构一般为图像内容中的角点.交叉点.闭合区域中心点等具有一定物理结构的点,而提取点结构的一般思想为构建能够区分其他图像结构的响应函数或者从特征线或轮廓中进行稀疏采样.Harris角点检测器便是运用二阶矩或自相关矩阵来加速局部极值搜索并保证方向的不变性.基于像素比较的特征提取方法也称为二值特征,通常具有极高的提取效率并具有一定的方向不变性以及所提取的特征点具有较高的重复率,对后续的匹配具有重要…
SIFT算法中,在DoG空间找到极值点后,需要对极值点进行修正,本文主要详细的讲解一下为什么需要修正,以及如何对极值点进行修正. 下图演示了二维函数离散空间得到的极值点与连续空间的极值点之间的差别 利用已知的离散空间点插值得到连续空间极值点的方法叫做子像元插值. 首先来看一个一维函数插值的例子(如图): 这个图中,我们清晰的看到,离散空间的极值点和连续空间的极值点并不是同一个点 我们对函数f(x)使用泰勒级数,将其展开为: 注:此处说一下离散空间的一阶导和二阶导的求法: 然后对f(x)求导,可以…
SIFT算法:DoG尺度空间生产  SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向  SIFT算法:特征描述子 目录: 1.确定描述子采样区域 2.生成描述子 2.1 旋转图像至主方向 2.2 生成特征向量 3.归一化特征向量 附:SIFT开源代码集 1 确定描述子采样区域 SIFI 描述子h(x, y, θ)是对特征点附近邻域内高斯图像梯度统计结果的一种表示,它是一个三维的阵列,但通常将它表示成一个矢量.矢量是通过对三维阵列按一定规律进行排列得到的.特征描述子与特…