D - We Like AGC Time Limit: 2 sec / Memory Limit: 1024 MB Score : 400400 points Problem Statement You are given an integer NN. Find the number of strings of length NN that satisfy the following conditions, modulo 109+7109+7: The string does not conta…
题目链接 思路自西瓜and大佬博客:https://www.cnblogs.com/henry-1202/p/10590327.html#_label3 数据范围小 可直接dp f[i][j][a][b] 表示 i位置上是j i-1上是a i-2上是b 状态转移是由i-1转移过来的,所以就必须还要一个i-3 所以就多加上一个循环 最主要就是转移过程中要枚举每种情况 然后排除掉 大佬的博客用了map和string简化了枚举的过程 不过他说只有六种情况 我布吉岛为啥只有六种 我写出了八种qaq ma…
洛谷题面传送门 & Atcoder 题面传送门 12 天以前做的题了,到现在才补/yun 做了一晚上+一早上终于 AC 了,写篇题解纪念一下 首先考虑如果全是 \(-1\)​ 怎么处理.由于我们不关心每个 pair 中的 max 是多少,并且显然每个 pair 的最小值都是两两不同的,因此我们可以考虑有多少个最小值组成的集合,然后答案乘上 \(n!\) 即可.而显然如果我们将"作为某个 pair 的最小值"的位置放上一个左括号,"不作为某个 pair 的最小值&quo…
题目传送门 典型的 Atcoder 风格的计数 dp. 题目可以转化为每次在序列中插入一个 \([1,k]\) 的数,共操作 \(n\) 次,满足后一个序列的字典序严格大于前一个序列,问有多少种操作序列. 显然相同的数可以合并,因为在由相同的数 \(x\) 组成的数段中,在任何位置插入 \(x\),得到的序列都是相同的. 再考虑字典序的问题.你只能序列末尾或者一个 \(<x\) 的数前面插入 \(x\),否则得到的序列的字典序就会 \(\geq\) 原序列的字典序. 但这样问题还是比较棘手,我们…
手速选手成功混进rated only里面的前30名,但是总排名就到110+了... A - Double Helix #include <bits/stdc++.h> #define ll long long #define inf 0x3f3f3f3f #define il inline namespace io { #define in(a) a = read() #define out(a) write(a) #define outn(a) out(a), putchar('\n') #…
题目 首先明确先手的棋子是往左走的,将其称为棋子1:后手的棋子是往右走的,将其称为棋子2. 如果有一些行满足1在2右边,也就是面对面,那其实就是一个nim,每一行都是一堆石子,数量是两个棋子之间的空格数.这些行称为nim行. 如果一些行1在2左边,那么两个人能走的步数是互不影响的:在这种行里,不管是先手还是后手都只会一次走1格,而且不同的这种行都是等价的,所以我们可以把所有1在2左边的行中,每个人能走的步数都分别求和,称为这个人的"额外步数". 把所有nim行构成的nim游戏,和额外步…
C - Cleaning 题目连接: http://agc010.contest.atcoder.jp/tasks/agc010_c Description There is a tree with N vertices, numbered 1 through N. The i-th of the N−1 edges connects vertices ai and bi. Currently, there are Ai stones placed on vertex i. Determine…
Atcoder 题面传送门 洛谷题面传送门 又是道思维题,又是道把我搞自闭的题. 首先考虑对于固定的 \(a_1,a_2,\dots,a_n;b_1,b_2,\dots,b_m\) 怎样判定是否合法,我们对于回文串对应的点之间连边,表示它们必须相等,这样可以形成一张图,如果该图连通那么证明这两个数组合法,反之不合法,正确性显然. 注意到对于每个 \(a_i\) 会连出 \(\lfloor\dfrac{a_i}{2}\rfloor\) 条边,换句话说,如果 \(a_i\) 是偶数那么全部 \(\d…
Atcoder 题面传送门 & 洛谷题面传送门 简单题,由于这场 arc 的 F 是 jxd 作业而我不会做,所以只好来把这场的 E 水掉了. 我们记 \(f(i)\) 为钦定 \(i\) 个元素出现次数不超过一次,剩余放任自流(cmd_blk 内味)的方案数,再记 \(g(i)\) 为恰好 \(i\) 个元素出现次数不超过一次的方案数,那么有 \(f(i)=\sum\limits_{j=i}^ng(j)\dbinom{j}{i}\),二项式反演一下可得 \(g(i)=\sum\limits_{…
Atcoder 题面传送门 & 洛谷题面传送门 tsc 考试前 A 的题了,结果到现在才写这篇题解--为了 2mol 我已经一周没碰键盘了,现在 2mol 结束算是可以短暂的春天 短暂地卷一会儿 OI 了(( u1s1 写这篇题解的时候我连题都快忘了... 首先设 \(b_i=\dfrac{A_i}{\sum\limits_{j=0}^{2^n-1}A_j}\),其次碰到这种期望类的题目我们考虑套路地设 \(p_i\) 表示异或得到 \(i\) 的概率,那么有 \(p_i=\sum\limits…