Tensorflow做阅读理解与完形填空】的更多相关文章

catalogue . 前言 . 使用的数据集 . 数据预处理 . 训练 . 测试模型运行结果: 进行实际完形填空 0. 前言 开始写这篇文章的时候是晚上12点,突然想到几点新的理解,赶紧记下来.我们用深度学习(例如tensorflow)的时候,一定要着重训练自己的建模和抽象能力,即把一个复杂的业务问题抽象为一个数学模型问题.从本质上说,阅读理解做完形填空和人机对话AI是一样的,所不同的地方在于,前者的输入一段长对话,且是带有上下文的长对话,而输出可能是一段短语,这要求神经网络需要训练出一个"长…
moodle中的完形填空题的文本编写方法 [完形填空题]考题把一段文字挖去一些空,让考生根据上下文正确地完成这些填空.完型填空题中的一段短文可以包括各种题目,如选择,填空,和数字题等. 题目的编辑是在编辑页面中输入一些按照完形填空的书写格式的文本. 下面介绍完型填空题的几种题型的书写方法: 完形选择题: 书写格式{1(分数):MULTICHOICE(题型):错误答案#对该错误答案的反馈~另一个错误答案#对另一个错误答案的反馈~=正确答案#对该正确答案的反馈~P%可信度一半的答案#对该可信度一半的…
如上图所示,展示了如何用BERT来做信息抽取任务的结构图.注意一下几点即可: 1.将Question和Paragraph分别作为BERT的text1和text2输入. 2.start/end span在Paragraph对应的输出位置表示. 通常输出会通过2个dense网络,接到start输出和end输出序列. 假设Paragraph为"周杰伦出生于台湾",Question为"周杰伦出生于哪里?",则laebl为:start[0,0,0,0,0,1,0],end[0…
目录 简介 经典模型概述 Model 1: Attentive Reader and Impatient Reader Model 2: Attentive Sum Reader Model 3: Stanford Attentive Reader Model 4: AOA Reader Model 5: Match-LSTM and Answering Point Match-LSTM Pointer Net Match-LSTM and Answering Point Model 5: Bi…
目录 简介 经典模型概述 Model 1: Attentive Reader and Impatient Reader Attentive Reader Impatient Reader Model 2: Attentive Sum Reader Model 3: Stanford Attentive Reader Model 4: AOA Reader Model 5: Match-LSTM and Answering Point Match-LSTM Pointer Net Match-LS…
很久之前就得到了百度机器阅读理解关于数据集的这篇文章,今天才进行总结!.... 论文地址:https://arxiv.org/abs/1711.05073 自然语言处理是人工智能皇冠上的明珠,而机器阅读理解可以说是自然语言处理皇冠上的明珠.近些年机器阅读理解领域也越来越火热,百度所创造的DuReader这个数据集以及百度的两篇被ACL所收录的论文都充分证明了我们又向机器阅读理解领域迈进了一步. 这篇文章主要介绍了DuReader这个数据集,这个数据集是目前最大的关于中文的MRC数据集. 0摘要:…
标题:Neural Machine Reading Comprehension: Methods and Trends 作者:Shanshan Liu, Xin Zhang, Sheng Zhang, Hui Wang, Weiming Zhang 链接:https://arxiv.org/pdf/1907.01118.pdf 摘要:过去几年里,随着深度学习的出现,机器阅读理解(其要求机器基于给定的上下文回答问题)已经赢得了越来越广泛的关注.虽然基于深度学习的机器阅读理解研究正蓬勃发展,但却没有…
LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛[赛道一]设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由于比赛期间事情多,没有好好在test集做测试. 个人认为该算法根正苗红,理论上可以获得更好的效果,因此做个开源,抛砖引玉,希望有人能提出更为有效的改进.本次开源的代码可读性较强,也有较高的扩展性,本人…
本文是对xing_NLP中的用N-gram语言模型做完型填空这样一个NLP项目环境搭建的一个说明,本来想写在README.md中.第一次用github中的wiki,想想尝试一下也不错,然而格式非常的混乱,自己都满意,所以先在博客园记录一下,等github博客搭建成功了再说. 1. 操作系统: 作为programer,linux自然是首先选择,ubuntu,centos等等都可以.我用的是CentOS7.3,之前用Centos6.5各种报错,建议装最新版的linux系统,何为最新版?2016年以后…
catalogue . 训练集 . 数据预处理 . 神经网络模型设计(对话集 <-> 问题集) . 神经网络模型设计(问题集 <-> 回答集) . RNN神经网络 . 训练 . 效果验证 1. 训练集 Mary moved to the bathroom. John went to the hallway. Where Daniel went back to the hallway. Sandra moved to the garden. Where John moved to t…