Numpy中的shape和reshape()】的更多相关文章

shape是查看数据有多少行多少列reshape()是数组array中的方法,作用是将数据重新组织 1.shape import numpy as np a = np.array([1,2,3,4,5,6,7,8]) #一维数组 print(a.shape[0]) #值为8,因为有8个数据 print(a.shape[1]) #IndexError: tuple index out of range a = np.array([[1,2,3,4],[5,6,7,8]]) #二维数组 print(…
shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度.它的输入参数可以使一个整数表示维度,也可以是一个矩阵.这么说你可能不太理解,我们还是用各种例子来说明他的用法: 一维矩阵[1]返回值为(1L,) >>> z.shape(1,) 二维矩阵,返回两个值 >>> m = np.zeros((2,3))>>> m.shape(2, 3) 一个单独的数字,返回值为空 …
转自 https://blog.csdn.net/u010758410/article/details/71554224# shape函数是numpy.core.fromnumeric中的函数,它的功能是查看矩阵或者数组的维数. 举例说明: 建立一个3×3的单位矩阵e, e.shape为(3,3),表示3行3列,第一维的长度为3,第二维的长度也为3 >>> e = eye(3) >>> e array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0…
pytorch网络输入图像的格式为(C, H, W),而numpy中的图像的shape为(H,W,C) 所以一般需要变换通道,将numpy中的shape变换为torch中的shape. 方法如下: # A是numpy数据类型A = A.transpose(0,1,2) # 没有改变:(h,w,c) A = A.transpose(2,0,1) # 转换为:(c,h,w) 这样就可以直接输入到torch的网络中了.…
numpy.array 的shape属性理解 在码最邻近算法(K-Nearest Neighbor)的过程中,发现示例使用了numpy的array数组管理,其中关于array数组的shape(状态)属性,下面是对应的理解 numpy 创建的数组都有一个shape属性,它是一个元组,返回各个维度的维数.有时候我们可能需要知道某一维的特定维数. 二维情况 >>> import numpy as np >>> y = np.array([[1,2,3],[4,5,6]]) &…
numpy 中的reshape,flatten,ravel 数据平展,多维数组变成一维数组 import numpy as np 使用array对象 arr1=np.arange(12).reshape(3,4) print(arr1) print(type(arr1)) [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] <class 'numpy.ndarray'> flatten 展平 a=arr1.flatten() # 默认参数order=C,按照行进行展平:o…
1. numpy.reshape  重塑 reshape是一种函数,函数可以重新调整矩阵的行数.列数.维数. B = reshape(A,m,n) 返回一个m*n的矩阵B, B中元素是按列从A中得到的.如果A中元素个数没有m*n个, 则会引发错误.   2.numpy.shape  输入参数:类似数组(比如列表,元组)等,或是数组. 返回:一个整型数字的元组,元组中的每个元素表示相应的数组每一维的长度. 注:只有数组array才可以使用shape和reshape函数.…
[开发技巧]·Numpy中对axis的理解与应用 1.问题描述 在使用Numpy时我们经常要对Array进行操作,如果需要针对Array的某一个纬度进行操作时,就会用到axis参数. 一般的教程都是针对二维矩阵操作axis,当axis为0时,计算方向时列,当axis为1时计算方向为行. 但是这样的描述并不能让我们真正理解axis的含义.下面我一个三维Array,来带领大家深入理解axis 2.实战讲解 >>> import numpy as np >>> arrays…
关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的mat…
broadcast 是 numpy 中 array 的一个重要操作. 首先,broadcast 只适用于加减. 然后,broadcast 执行的时候,如果两个 array 的 shape 不一样,会先给“短”的那一个,增加高维度“扩展”(broadcasting),比如,一个 2 维的 array,可以是一个 3 维 size 为 1 的 3维 array. 类似于: shape(1,3,2) = shape(3,2) 最后,比较两个 array(扩展后的),按照 dimension 从低到高,…