[CQOI2012]交换棋子 网络流】的更多相关文章

---题面--- 题解: 一开始很快想出了一个接近正解的建图方法,但其实是错误的,不过还是骗了70分_(:зゝ∠)_ 首先我们可以观察到棋子有限,但费用多种,其实也就相当于限制了流量,找最小费用 对于初始状态的每一个1,我们连s ---> x   flow = 1  cost = 0 对于目标状态的每一个1,我们连x ---> t  flow = 1 cost = 0 对于每一个方块,我们向周围八个格子连边 flow = inf , cost = 1(表示交换了一次) 然后就是比较妙难的部分了…
  2668: [cqoi2012]交换棋子 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1334  Solved: 518[Submit][Status][Discuss] Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. Input 第一行包含两个整数n,m(1<=n, m<=20).以下n行为初始状态,每行为…
题解: 可以戳这里:http://www.cnblogs.com/zig-zag/archive/2013/04/21/3033485.html 其实自己yy一下就知道这样建图的正确性了. 感觉太神奇,居然还能拆成3个点 orzzzzzzzzzzzzzzzzzzzzzzzzz 跪跪跪跪跪跪跪跪 代码: #include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include&l…
2668: [cqoi2012]交换棋子 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1112  Solved: 409[Submit][Status][Discuss] Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. Input 第一行包含两个整数n,m(1<=n, m<=20).以下n行为初始状态,每行为一个…
[BZOJ2668][cqoi2012]交换棋子 Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. Input 第一行包含两个整数n,m(1<=n, m<=20).以下n行为初始状态,每行为一个包含m个字符的01串,其中0表示黑色棋子,1表示白色棋子.以下n行为目标状态,格式同初始状态.以下n行每行为一个包含m个0~9数字的字符串,表示每个格子参与交换的次数上限.…
有一个\(n\)行\(m\)列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第\(i\)行第\(j\)列的格子只能参与\(m[i][j]\)次交换. 输入格式: 第一行包含两个整数\(n,m(1<=n, m<=20)\). 以下\(n\)行为初始状态,每行为一个包含\(m\)个字符的\(01\)串,其中\(0\)表示黑色棋子,\(1\)表示白色棋子. 以下\(n\)行为目标状态,格式同初始状态. 以下\(n\)行每行为一个包含\(m\)个\…
题目链接 首先黑白棋子的交换等价于黑棋子在白格子图上移动,都到达指定位置. 在这假设我们知道这题用网络流做. 那么黑棋到指定位置就是一条路径,考虑怎么用流模拟出这条路径. 我们发现除了路径的起点和终点的格子消耗次数为1,路径上其它点的格子交换次数为\(2\). 可以想到把每个点拆成\(in\)和\(out\),但这样无法体现出,作为起点/终点与路径中其它点的次数消耗差别. 于是拆成三个点,\(in,x,out\),\(x\)代表原点,设点\(x\)流量为\(lim\),\(in,out\)平分流…
题目描述 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列的格子只能参与mi,j次交换. 输入输出格式 输入格式: 第一行包含两个整数n,m(1<=n, m<=20).以下n行为初始状态,每行为一个包含m个字符的01串,其中0表示黑色棋子,1表示白色棋子.以下n行为目标状态,格式同初始状态.以下n行每行为一个包含m个0~9数字的字符串,表示每个格子参与交换的次数上限. 输出格式: 输出仅一行,为最小交换总次数.如果无…
传送门 好难的网络流啊,建图真的超难. 如果不告诉我是网络流的话,我估计就会写dfs了. 使用费用流解决本题,设点 $p[i][j]$ 的参与交换的次数上限为 $v[i][j]$ ,以下为建图方式: 将一个点分成三个点,分别为入点,原点和出点. 如果开始的图上该位置有棋子,那么从S到该点的原点连一条边权1,费用0的边 如果结束的图上该位置有棋子,那么从该点的原点到T连一条边权1,费用0的边 如果该点只在开始的图上出现,那么从该点的入点向原点连一条边权为 $v[i][j]/2$ ,费用为1的边,从…
思路 相当神奇的费用流拆点模型 最开始我想到把交换黑色棋子看成一个流流动的过程,流从一个节点流向另一个节点就是交换两个节点,然后把一个位置拆成两个点限制流量,然后就有了这样的建图方法 S向所有初始是黑色点的入点连cap=1,cost=0的边,最后是黑色点的出点向T连一条cap=1,cost=0的边,然后对应点的出点向它八连通的点的入点连一条cap=INF,cost=1的边,每个点的入点向出点连一条cap=limit,cost=0的边 看起来很靠谱,实际是假的 因为我们刚才的方法没有考虑到一条交换…