ID3决策树:利用信息增益来划分节点 信息熵是度量样本集合纯度最常用的一种指标.假设样本集合D中第k类样本所占的比重为pk,那么信息熵的计算则为下面的计算方式 当这个Ent(D)的值越小,说明样本集合D的纯度就越高 有了信息熵,当我选择用样本的某一个属性a来划分样本集合D时,就可以得出用属性a对样本D进行划分所带来的“信息增益” 一般来讲,信息增益越大,说明如果用属性a来划分样本集合D,那么纯度会提升,因为我们分别对样本的所有属性计算增益情况,选择最大的来作为决策树的一个结点,或者可以说那些信息…